Der verbotenen Seite von Molekülen auf der Spur

Simulation der räumlichen Verteilung von einzelnen Stickstoff-Ionen (grün) im Inneren eines Coulomb-Kristalls von lasergekühlten Calcium-Ionen (blau). Illustration: Universität Basel, Departement Chemie

Die Spektroskopie, die Wechselwirkung von Materie mit Licht, ist die wohl wichtigste Methode, um die Eigenschaften von Molekülen zu untersuchen. Moleküle können dabei nur Licht bei wohldefinierten Wellenlängen absorbieren, die genau der Differenz zwischen zwei quantenmechanischen Energiezuständen entsprechen. Man spricht dabei von spektroskopischen Übergängen. Aus der Analyse der Wellenlänge und der Intensität der Übergänge lassen sich Informationen über die chemische Struktur und über die molekulare Bewegung wie Drehungen oder Schwingungen gewinnen.

In bestimmten Fällen ist der Übergang zwischen zwei Energiezuständen jedoch nicht erlaubt, was als «verbotener» Übergang bezeichnet wird. Dieses Verbot ist jedoch nicht kategorisch, sodass verbotene Übergänge mit einer extrem empfindlichen Messmethode trotzdem beobachtet werden können. Die entsprechenden Spektren sind sehr schwach, können aber auch sehr genau vermessen werden. Sie geben Aufschluss über molekulare Eigenschaften mit einer Präzision, die mit erlaubten Spektren nicht erreichbar wäre.

Präzise Analyse molekularer Eigenschaften

Die Forschungsgruppe um Prof. Stefan Willitsch vom Departement Chemie der Universität Basel hat im Rahmen des Nationalen Forschungsschwerpunkts «QSIT – Quantenwissenschaften und -technologie» Methoden etabliert, mit denen Moleküle gezielt auf Quantenebene manipuliert und untersucht werden können.

In der vorliegenden Arbeit wurden dabei einzelne geladene Stickstoffmoleküle (Ionen) in einem wohldefinierten molekularen Energiezustand erzeugt. Diese wurden dann in einer Ultrahochvakuum-Kammer in eine Anordnung von ultrakalten, lasergekühlten Calcium-Ionen, einen sogenannten Coulomb-Kristall, eingebracht. Dadurch kühlten sich die Molekül-Ionen auf wenige tausendstel Grad über dem absoluten Temperaturnullpunkt ab und lokalisierten sich im Raum. In dieser isolierten, kalten Umgebung konnten die Moleküle über lange Zeiträume störungsfrei untersucht werden. Auf diese Weise gelang es den Forschern, mit einem intensiven Laser verbotene Übergänge im Infrarotbereich anzuregen und zu beobachten.

Perspektive für neue Anwendungen

Die vorgestellte Methode weist den Weg zu neuen Anwendungen wie zum Beispiel der hochgenauen Vermessung molekularer Eigenschaften, der Entwicklung extrem präziserer Uhren auf Basis einzelner Moleküle oder der Quanteninformationsverarbeitung mit Molekülen. Sie eröffnet auch Möglichkeiten, fundamentale Fragestellungen mithilfe spektroskopischer Präzisionsmessungen an Molekülen aufzugreifen, die bisher eine Domäne der Hochenergiephysik waren, wie zum Beispiel die Frage, ob die Naturkonstanten tatsächlich konstant sind.

Originalbeitrag
Matthias Germann, Xin Tong, Stefan Willitsch
Observation of electric-dipole-forbidden infrared transitions in cold molecular ions
Nature Physics, published online 21 September 2014 | doi: 10.1038/nphys3085

Weitere Auskünfte
Prof. Dr. Stefan Willitsch, Universität Basel, Departement Chemie, Tel. +41 61 267 38 30, E-Mail: stefan.willitsch@unibas.ch

Media Contact

Reto Caluori Universität Basel

Weitere Informationen:

http://www.unibas.ch

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Wolken bedecken die Nachtseite des heißen Exoplaneten WASP-43b

Ein Forschungsteam, darunter Forschende des MPIA, hat mit Hilfe des Weltraumteleskops James Webb eine Temperaturkarte des heißen Gasriesen-Exoplaneten WASP-43b erstellt. Der nahe gelegene Mutterstern beleuchtet ständig eine Hälfte des Planeten…

Neuer Regulator des Essverhaltens identifiziert

Möglicher Ansatz zur Behandlung von Übergewicht… Die rapide ansteigende Zahl von Personen mit Übergewicht oder Adipositas stellt weltweit ein gravierendes medizinisches Problem dar. Neben dem sich verändernden Lebensstil der Menschen…

Maschinelles Lernen optimiert Experimente mit dem Hochleistungslaser

Ein Team von internationalen Wissenschaftlerinnen und Wissenschaftlern des Lawrence Livermore National Laboratory (LLNL), des Fraunhofer-Instituts für Lasertechnik ILT und der Extreme Light Infrastructure (ELI) hat gemeinsam ein Experiment zur Optimierung…

Partner & Förderer