Die tickende Gen-Uhr hat ausgedient

Entstehung der Körpersegmente in einem Zebrafischembryo. Die Aktivität der Gene verläuft in Wellen, die vom hinteren in den vorderen Teil des Tieres wandern. Gleichzeitig bewegt sich das Gewebe auf diese Wellen zu – ein Doppler-Effekt entsteht. © MPI f. molekulare Zellbiologie und Genetik, Dresden/ Soroldoni

Die Körper vieler Lebewesen sind in Abschnitte unterteilt. Dieses Muster kann man von Würmern bis zum Menschen immer wieder erkennen. Diese Segmentierung findet sehr früh in der Entwicklung statt: Entsteht etwa die Wirbelsäule, bilden sich in einer rhythmisch fortlaufenden Folge die Wirbelvorläufer.

Der Proteinkomplex, der dies wie eine tickende Uhr in Wellen steuert, wird deshalb „Segmentation Clock“ genannt. Bisher erklärte man sich diese Musterbildung mit der zeitlichen Abfolge von in Wellen ablaufender Genaktivität.

Die neuesten Erkenntnisse von Wissenschaftlern des Max-Planck-Instituts für molekulare Zellbiologie und Genetik in Dresden Forscher legen nahe, dass die Einteilung in Köpersegmente ausgeklügelter als bisher angenommen reguliert wird. Aus Genexpressions-Wellen in einem sich verkürzenden Gewebe entsteht eine Art Doppler-Effekt, der den Rhythmus der Segmentierung beeinflusst.

Ähnlich wie bei vielen Tieren ist auch der menschliche Körper entlang seiner Achse in Segmente eingeteilt. Während der embryonalen Entwicklung helfen räumliche und zeitliche Signale dabei, die richtige Anzahl von Segmenten zu bilden, die später zu Rippen und Wirbeln werden. Der Rhythmus dieses Strukturierungsprozesses ist dabei entscheidend. Wie aber wird der ganze Vorgang zeitlich koordiniert?

Bei Wirbeltieren stellt man sich die Segmentierung während der embryonalen Entwicklung als Wellen von Genen vor, die in ihrer Aktivität anschwellen und abebben. Den Rhythmus, der diesem komplexen Netzwerk unterliegt und es steuert, vergleicht man mit einer tickenden Uhr:

Bei jedem Ticken bildet sich ein neues Segment. Dieses Bild stellten die Dresdner Forscher um den Biologen Andy Oates und den Physiker Frank Jülicher vom Max-Planck-Institut für molekulare Zellbiologie und Genetik zusammen mit Kollegen vom Max-Planck-Institut für Physik komplexer Systeme auf den Prüfstand: Sie entwickelten eine neue transgene Zebrafisch-Art („Looping“) und ein mehrdimensionales Zeitraffer-Mikroskop.

Mit diesem konnten sie nun gleichzeitig die Genexpressionswellen und die Segmentbildung sichtbar machen. Dabei haben sie beobachtet, dass das Einsetzen und Abschwellen der Genexpression in unterschiedlichen Abständen erfolgt. Das Bild der tickenden Uhr hat damit als Erklärungsmodell ausgedient. Vielmehr beeinflusst eine Art Doppler-Effekt die Segmentbildung.

Schallwellen und Genexpressionswellen

Ein Doppler-Effekt tritt auf, wenn beispielsweise ein Krankenwagen mit Martinshorn an einem Passanten vorüber fährt. Dabei ändert sich den Passanten scheinbar die Tonhöhe der Sirene, denn die Frequenz der Schallwellen steigt und fällt mit der erst zu- und dann wieder abnehmenden Entfernung zwischen Sender und Empfänger.

Wie sich nun zeigt: Schallwellen verhalten sich die Wellen der Genexpression in einem sich entwickelnden Zebrafisch gar nicht so unterschiedlich. Sie wandern von der Schwanzspitze zum Kopf des Tieres. Gleichzeitig entwickelt sich aber der Embryo weiter, seine Form verändert sich also, teilweise verkürzt sich dabei Gewebe.

Der vordere Teil des Fisches, an dem die entstehenden Segmente angesiedelt sind, bewegt sich auf das hintere Ende zu, von dem die Genexpressionswellen geschickt werden – es kommt zu einem Doppler-Effekt in dem wachsenden Fischembryo. Überlagert wird dieser Effekt durch sich ständig verändernde Wellenlängen. Dies wirkt dem Doppler-Effekt entgegen, kann ihn aber nicht unterdrücken. Durch dieses komplexe Timing werden Anzahl und Größe der entstehenden Wirbel und Rippen gelenkt.

Die Erkenntnisse der Dresdner Forscher könnten unser Verständnis von der zeitlichen Steuerung der Segmentierung während der Entwicklung revolutionieren. Was genau die unterschiedlichen Wellenprofile auslöst, wissen die Forscher noch nicht.

Ansprechpartner 

Florian Frisch

Presse- und Öffentlichkeitsarbeit

Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden

Telefon: +49 351 210-2840
Fax: +49 351 210-2020

 

Originalpublikation

 
Daniele Soroldoni, David J. Jörg, Luis G. Morelli, David L. Richmond, Johannes Schindelin, Frank Jülicher, Andrew C. Oates
A Doppler effect in embryonic pattern formation.
Science, 11 July 2014

Media Contact

Florian Frisch Max-Planck-Institut

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Das Mikrobiom verändert sich dynamisch und begünstigt wichtige Funktionen für den Wirt

Ein interdisziplinäres Forschungsteam des Kieler SFB 1182 untersucht am Beispiel von Fadenwürmern, welche Prozesse die Zusammensetzung des Mikrobioms in Wirtslebewesen steuern. Alle vielzelligen Lebewesen – von den einfachsten tierischen und…

Wasser im Boden – genaue Daten für Landwirtschaft und Klimaforschung

Die PTB präsentiert auf der Woche der Umwelt, wie sich die Bodenfeuchte mithilfe von Neutronenstrahlung messen lässt. Die Bodenfeuchte hat nicht nur Auswirkungen auf die Landwirtschaft, sondern ist als Teil…

Bioreaktor- und Kryotechnologien für bessere Wirkstofftests mit humanen Zellkulturen

Medizinische Wirkstoffforschung… Viele Neuentwicklungen von medizinischen Wirkstoffen scheitern, weil trotz erfolgreicher Labortests mit Zellkulturen starke Nebenwirkungen bei Probanden auftreten. Dies kann passieren, wenn zum Beispiel die verwendeten Zellen aus tierischem…

Partner & Förderer