Jacobs Forscher entwickeln neuartiges Gel für biologische und medizinische Anwendungen

Schematische Darstellung einer metallorganischen Gerüstverbindung (SURMOF, links), der Gerüstverbindung nach dem Quervernetzungsvorgang (Mitte) und nach dem Herauslösen der Kupferionen (rechts). Copyright: KIT<br>

Aus einer auf einem Substrat aufgewachsenen metallorganischen Gerüstverbindung (SURMOF) entsteht ein stabiles poröses Gel (SURGEL) für biologische und medizinische Anwendungen. Die Wissenschaftler präsentieren das Verfahren im renommierten „Journal of the American Chemical Society“.

Das Beschichten von Festkörpern mit Polymeren spielt in vielen Bereichen der Technik-, Natur- und Lebenswissenschaften eine zentrale Rolle. So müssen Implantate für den menschlichen Körper, wie Herzschrittmacher, Stents oder Gelenkprothesen, mit geeigneten Biomaterialien beschichtet und anschließend mit medizinischen Wirkstoffen imprägniert werden, um das Einheilen zu beschleunigen und Entzündungen zu unterdrücken.

Forscher der Jacobs University haben nun in Kooperation mit Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) ein völlig neuartiges Verfahren zur Herstellung eines Gels aus miteinander vernetzten organischen Bausteinen entwickelt. „Gegenüber konventionellen Polymerbeschichtungen zeichnet sich dieses Gel dadurch aus, dass die Porengröße der Schicht sich gezielt an einzubettende bioaktive Substanzen, beispielsweise pharmazeutische Wirkstoffe, anpassen lässt“, erklärt Professor Christof Wöll, Leiter des Instituts für Funktionelle Grenzflächen (IFG) des KIT.

Das entwickelte Verfahren zur Herstellung des Gels besteht aus mehreren Schritten: Zunächst wird auf einem festen Substrat eine Schicht aus einer sogenannten metallorganischen Gerüstverbindung (MOF – Metal Organic Framework) aufgewachsen. In dieser SURMOF-Schicht (Surface Mounted Metal Organic Framework) lassen sich Größe und Form der Poren sowie deren chemische Funktionalität maßschneidern. Die SURMOF Schicht selbst eignet sich allerdings nicht für den Einsatz in biologischen Umgebungen – aufgrund ihrer ausgeprägten Wasserempfindlichkeit würde sie rasch abgebaut werden. Außerdem enthält diese spezielle SURMOF-Variante Kupferionen, die eine für Lebewesen toxische Wirkung besitzen.

In einem zweiten Schritt werden daher die Molekülbausteine in dem SURMOF mit einem weiteren Molekül untereinander quervernetzt. Dabei wird ein besonders effizientes, als „Click-Chemie“ bezeichnetes Verfahren benutzt, das bereits bei Zimmertemperatur eine vollständige Umsetzung ermöglicht. Anschließend werden in einem dritten Schritt die Kupferionen aus dem Gerüst herausgelöst. Übrig bleiben miteinander vernetzte organische Bausteine, die ein poröses Polymer bilden. Dieses SURGEL bildet eine gleichmäßig dicke Schicht und verbindet die Vorteile des SURMOFs mit einer hohen Stabilität unter biologischen Bedingungen.

Thomas Heine kommentiert: „Diese Arbeit zeigt, dass erfolgreiche Forschung in der Nanotechnologie die enge Kooperation zwischen Experimentatoren und Theoretikern erfordert. Die Kenntnis der atomaren Struktur konnte durch eine atomistische Computersimulation gewonnen werden. Dadurch sind wir nun in der Lage herauszufinden, wie das Material z.B. Wirkstoffe aufnehmen kann, und wie es sich bei mechanischer Beanspruchung verhält.“

Fragen zu den Forschungsergebnissen beantwortet:
Thomas Heine | Professor of Theoretical Physics
Tel.: +49 (0)421 200 3223 | E-Mail: t.heine@jacobs-university.de

Media Contact

Judith Ahues idw

Weitere Informationen:

http://www.jacobs-university.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Das Mikrobiom verändert sich dynamisch und begünstigt wichtige Funktionen für den Wirt

Ein interdisziplinäres Forschungsteam des Kieler SFB 1182 untersucht am Beispiel von Fadenwürmern, welche Prozesse die Zusammensetzung des Mikrobioms in Wirtslebewesen steuern. Alle vielzelligen Lebewesen – von den einfachsten tierischen und…

Wasser im Boden – genaue Daten für Landwirtschaft und Klimaforschung

Die PTB präsentiert auf der Woche der Umwelt, wie sich die Bodenfeuchte mithilfe von Neutronenstrahlung messen lässt. Die Bodenfeuchte hat nicht nur Auswirkungen auf die Landwirtschaft, sondern ist als Teil…

Bioreaktor- und Kryotechnologien für bessere Wirkstofftests mit humanen Zellkulturen

Medizinische Wirkstoffforschung… Viele Neuentwicklungen von medizinischen Wirkstoffen scheitern, weil trotz erfolgreicher Labortests mit Zellkulturen starke Nebenwirkungen bei Probanden auftreten. Dies kann passieren, wenn zum Beispiel die verwendeten Zellen aus tierischem…

Partner & Förderer