Wie Fliegen fliegen

Fliegen sind exzellente Flieger. Aber ohne das Gen spalt bleiben sie auf der Erde und laufen. <br>© MPI für Biochemie / Frank Schnorrer <br>

Wie viele andere Insekten sind auch Fliegen wahre Flugkünstler – obwohl sie im Verhältnis zu ihrer Körpergröße relativ kleine Flügel besitzen. Wissenschaftler am Max-Planck-Institut (MPI) für Biochemie in Martinsried bei München haben kürzlich den entscheidenden genetischen Schalter identifiziert, der die Bildung von Flugmuskeln steuert.

„Das Gen spalt ist essentiell, damit die ultraschnellen Supermuskeln überhaupt entstehen können“, betont Frank Schnorrer, Leiter der Forschungsgruppe „Muskeldynamik“. „Wenn es fehlt, dann bilden sich anstelle von Flugmuskeln lediglich normale Beinmuskeln aus.“ Die Ergebnisse der Wissenschaftler wurden jetzt in Nature veröffentlicht.

Um mit ihren kleinen Flügeln effizient fliegen zu können, müssen Fliegen sehr schnell damit schlagen. Das verursacht das bekannte und allgegenwärtige Summen und Brummen der kleinen Flieger. Die Taufliege Drosophila melanogaster, im Volksmund auch Fruchtfliege genannt, bewegt ihre Flügel mit einer Frequenz von 200 Hertz – ihre Flugmuskeln kontrahieren und entspannen also 200-mal pro Sekunde. „Demgegenüber wirkt ein Hundertmetersprinter, der seine Beine nur wenige Male pro Sekunde bewegt, wie eine richtige Schnecke“, beschreibt Frank Schnorrer. Wie aber erreicht die Taufliege diese hohe Schlagfrequenz?

Muskeln steuern sämtliche Bewegungen, auch die der Flügel. Doch Flugmuskeln sind einzigartig. Ihre Kontraktionen werden nicht nur wie sonst durch Nervenimpulse gesteuert, sondern zusätzlich durch Spannung. Das ist möglich, weil jede Fliege zwei Kategorien von Flugmuskeln besitzt: Die einen bewegen die Flügel nach unten und dehnen dabei die anderen, die dann kontrahieren. So werden die Flügel wieder nach oben gezogen und ein stabiler Kreislauf beginnt.

Mithilfe gezielter Veränderungen von Genen der Taufliege haben Wissenschaftler der Forschungsgruppe Muskeldynamik am Max-Planck-Institut für Biochemie jetzt den entscheidenden Schalter für die Bildung von Flugmuskeln identifiziert: Spalt. Transkriptionsfaktoren wie Spalt spielen eine wichtige Rolle bei der richtigen Übersetzung des genetischen Materials in die Proteine, die von der jeweiligen Zelle benötigt werden. Spalt existiert nur in den Flugmuskeln und ist für den besonderen Aufbau ihrer Myofibrillen verantwortlich. Diese Bestandteile der Muskelfasern ermöglichen erst die Kontraktion des Muskels als Antwort auf die angelegte Spannung beim Flügelschlag. Wenn Spalt fehlt, sind die Fliegen zwar lebensfähig, können aber nicht fliegen. Die Flugmuskeln reagieren nicht mehr auf Spannung und verhalten sich wie normale Beinmuskeln. Umgekehrt gelang es den Wissenschaftlern allein durch das Einfügen von Spalt in Fliegenbeine, dort flugmuskelähnliche Muskeln zu erzeugen.

Die Ergebnisse könnten für die Humanmedizin ebenfalls relevant sein. „Die Körpermuskeln des Menschen besitzen zwar kein Spalt und werden auch kaum durch Spannung reguliert“, erklärt Frank Schnorrer. „Aber der menschliche Herzmuskel bildet Spalt und die Spannung in der Herzkammer beeinflusst die Stärke des Herzschlags. Ob Spalt eine Rolle bei der Regulation des Herzschlags spielt, ist bisher allerdings nicht bekannt und muss erst noch erforscht werden.“

Ansprechpartner
Dr. Frank Schnorrer
Forschungsgruppe Muskeldynamik
Max-Planck-Institut für Biochemie, Martinsried
E-Mail: schnorrer@biochem.mpg.de
Anja Konschak
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie, Martinsried
Telefon: +49 89 8578-2824
Fax: +49 89 8578-2943
E-Mail: konschak@biochem.mpg.de
Publikationsreferenz
Cornelia Schönbauer, Jutta Distler, Nina Jährling, Martin Radolf, Hans-Ulrich Dodt, Manfred Frasch & Frank Schnorrer (2011)
Spalt mediates an evolutionarily conserved switch to fibrillar
muscle fate in insects
Nature, 17. November 2011

Media Contact

Anja Konschak Max-Planck-Institut

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Experiment öffnet Tür für Millionen von Qubits auf einem Chip

Forschenden der Universität Basel und des NCCR SPIN ist es erstmals gelungen, eine kontrollierbare Wechselwirkung zwischen zwei Lochspin-Qubits in einem herkömmlichen Silizium-Transistor zu realisieren. Diese Entwicklung eröffnet die Möglichkeit, Millionen…

Stofftrennung trifft auf Energiewende

Trennkolonnen dienen der Separation von unterschiedlichsten Stoffgemischen in der chemischen Industrie. Die steigende Nutzung erneuerbarer Energiequellen bringt nun jedoch neue Anforderungen für einen flexibleren Betrieb mit sich. Im Projekt ColTray…

Kreuzfahrtschiff als Datensammler

Helmholtz-Innovationsplattform und HX Hurtigruten Expeditions erproben neue Wege in der Ozeanbeobachtung. Wissenschaftliche Forschung nicht nur von speziellen Forschungsschiffen aus zu betreiben, sondern auch von nicht-wissenschaftlichen Schiffen und marinen Infrastrukturen –…

Partner & Förderer