Nanoröhrchen sollen Bildschirm zum Leuchten bringen

Von der IBM-Deutschland gestifteter Hahn-Meitner-Technologie-Transfer-Preis zeichnet Materialforscher aus Den von der IBM-Deutschland gestifteten Technologie-Transfer-Preis 2000 des Hahn-Meitner-Instituts haben fünf Materialforscher unter Leitung von Prof. Dr. Alois Weidinger für ihre innovativen – und vermarktungsfähigen – Entwicklungsarbeiten erhalten. Ihre Forschungsergebnisse könnten die Herstellung neuartiger Flachbildschirme entscheidend verbessern. Der mit 10.000 Mark dotierte und im Abstand von zwei Jahren verliehene Preis wurde am 19. Oktober in Anwesenheit von Berlins Senator für Wissenschaft, Forschung und Kultur, Prof. Christoph Stölzl, und dem Vorsitzenden der Geschäftsführung der IBM-Deutschland GmbH, Erwin Staudt, übergeben.

Flachbildschirme sind dabei, die alten Bildröhren-Monitore ins Museum zu schicken, denn die neuen kleinen Geräte bieten überzeugende praktische Vorteile. Nachteilig sind jedoch vor allem die hohen Kosten, so dass weltweit an neuen Verfahren gearbeitet wird, damit Flachbildschirme billiger und noch besser werden.

Eine technologische Alternative zu den heute üblichen Flüssigkristallanzeigen (LCD) bieten Feld-Emissions-Displays (FED). Mit aktiv leuchtenden Bildpunkten können sie stromsparend ohne Hintergrundbeleuchtung betrieben werden und erlauben zudem einen großen seitlichen Betrachtungswinkel. Ihre Herstellungskosten könnten gegenüber LCD deutlich sinken.

Bei einem Feld-Emissions-Display wird jedes aufleuchtende Farbpixel des Monitors von einem separaten Elektronenstrahl angeregt. Im Spannungsfeld zwischen einer rückseitigen Kathodenplatte und der leuchtenden Frontplatte, an der sich die Anode befindet, entsteht ein Flächenschauer von Elektronenstrahlen. Um die Megapixel der Flachbildschirme einzeln anzusprechen, verwendet man wie bei den LCD ein feines Gitternetz aus gekreuzten elektrischen Leitungsbahnen. Spannungsspitzen an den Kreuzungspunkten des Gitters sind Triggersignale der Leuchtpunkte.

Eine technologische Herausforderung bei Feld-Emissions-Displays ist die Mikrostrukturierung einer geeigneten Kathodenplatte. In einem Areal aus isolierendem Material müssen sich elektrisch aktive Zonen befinden, die fein genug verteilt sind, um das Farbmuster des Bildschirms pixelgenau anzusprechen. Mikroskopisch kleine Entladungsspitzen, die durch Prägemasken lithographisch abgeformt werden, sind hierfür in der Erprobung. Eine weniger aufwendige Alternative könnten nanometerfeine Leitungskanäle sein, die vom atomaren Teilchenschauer einer Beschleunigeranlage erzeugt werden.

Als Ausgangsmaterial hierfür eignet sich eine Kohlenstoffstruktur, die in ihrer atomaren Anordnung dem Diamant ähnelt. Schichten dieses Materials lassen sich heute großflächig durch Abscheideverfahren herstellen. Bei einer Bestrahlung mit energiereichen Ionen entstehen in der nicht-leitenden Matrix graphitische Nanoröhrchen, die feine Leitungskanäle bilden. Die Methode nutzt damit das Phänomen, dass Kohlenstoff je nach seiner atomaren Struktur sowohl ein elektrischer Isolator (Diamant) wie ein elektrischer Leiter (Graphit) sein kann. Die Umwandlung der diamantähnlichen Struktur entlang der Ionenspur geschieht durch ein „Aufschmelzen“ aufgrund der hohen Energieübertragung und einer anschließenden Erstarrung in einer graphitischen Struktur.

Der Vorteil dieses Verfahrens gegenüber einer lithographisch erzeugten Kathodenschicht liegt in der einfacheren Herstellung und der höheren Lebensdauer der strom-leitenden Stellen. Die Preisträger des Hahn-Meitner-Technologie-Transfer-Preises 2000, Prof. Dr. Alois Weidinger, Dr. Johann Krauser, Dr. Wolfgang Harneit, Markus Waiblinger und Bernd Mertesacker, wollen jetzt in Zusammenarbeit mit der Industrie die Voraussetzungen einer großtechnischen Fertigung klären.

Die insgesamt zwölf Beiträge des Wettbewerbs um den Hahn-Meitner-Technologie-Transfer-Preis 2000 erstrecken sich im wesentlichen über das gesamte Forschungsspektrum des Hahn-Meitner-Instituts und betreffen Ergebnisse von der Solarenergie-Forschung(Photovoltaik und Brennstoffzellenforschung) bis zur grundlagenorientierten Strukturforschung mit dem Schwerpunkt Neutronenoptik

Media Contact

MA Thomas Robertson idw

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Das Mikrobiom verändert sich dynamisch und begünstigt wichtige Funktionen für den Wirt

Ein interdisziplinäres Forschungsteam des Kieler SFB 1182 untersucht am Beispiel von Fadenwürmern, welche Prozesse die Zusammensetzung des Mikrobioms in Wirtslebewesen steuern. Alle vielzelligen Lebewesen – von den einfachsten tierischen und…

Wasser im Boden – genaue Daten für Landwirtschaft und Klimaforschung

Die PTB präsentiert auf der Woche der Umwelt, wie sich die Bodenfeuchte mithilfe von Neutronenstrahlung messen lässt. Die Bodenfeuchte hat nicht nur Auswirkungen auf die Landwirtschaft, sondern ist als Teil…

Bioreaktor- und Kryotechnologien für bessere Wirkstofftests mit humanen Zellkulturen

Medizinische Wirkstoffforschung… Viele Neuentwicklungen von medizinischen Wirkstoffen scheitern, weil trotz erfolgreicher Labortests mit Zellkulturen starke Nebenwirkungen bei Probanden auftreten. Dies kann passieren, wenn zum Beispiel die verwendeten Zellen aus tierischem…

Partner & Förderer