Blick ins "Herz" einer zellulären molekularen Maschine

Sie bringen die Bauanleitungen für die Proteine in eine „lesbare“ Form, in der die Information direkt für die Proteinherstellung genutzt werden kann. Die Komplexität und hohe Dynamik der Spleißosomen machten es bisher jedoch unmöglich, ihre Funktionsweise im Detail zu untersuchen. Wissenschaftlern am MPI für biophysikalische Chemie (Göttingen) ist es nun erstmals gelungen, faszinierende Einblicke in das aktive „Herzstück“ der Spleißosomen zu erhalten (Nature, 452, 17. April 2008).

In den Zellen unseres Körpers werden alle wichtigen Funktionen – Katalyse, Bewegungs- und Transportprozesse, Signalübertragung und Informationsverarbeitung – von Proteinen ausgeführt. Die Bauanleitungen dieser Proteine sind in der Erbsubstanz (Desoxyribonukleinsäure, kurz „DNA“) einer jeden Zelle archiviert. Allerdings ist diese Information für die Herstellung von Proteinen nicht direkt nutzbar. Dazu müssen die Baupläne zunächst in eine Boten- Ribonukleinsäure (Boten-RNA) umkopiert werden.

In dieser Rohfassung der Boten-RNA enthalten die Bauanleitungen aber noch einigen Ballast; sie sind nicht durchgängig „lesbar“. Erst wenn die dazwischen liegenden überflüssigen Abschnitte entfernt werden, können die Bauanleitungen richtig interpretiert werden. Das präzise Herausschneiden nicht benötigter Abschnitte und das Verbinden erforderlicher Teilstücke erfolgen dabei ganz ähnlich dem Trennen und Verknüpfen von Seilenden in der Seefahrt. In Analogie dazu bezeichnen Wissenschaftler den zellulären Vorgang als „Spleißen“.

Das Spleißen erfolgt mit Hilfe einer komplexen makromolekularen Maschine aus über 150 Proteinen und bis zu fünf RNA-Molekülen – dem Spleißosom. Dieses muss sich für jede Runde von Schneiden und Verknüpfen auf der RNA neu zusammenbauen. Dazu werden im Zellkern aus einer Vielzahl von Einzelkomponenten zunächst eine Reihe vorgefertigter Komplexe bereitgestellt. Diese werden dann in einem hochdynamischen Prozess in wenigen Schritten zum funktionsfähigen Spleißosom zusammengesetzt. Doch sind Spleißosomen nicht nur hochdynamisch, sondern auch äußerst empfindlich. Versuche, sie ohne Verlust ihrer Aktivität aufzureinigen, blieben daher bisher erfolglos.

Wissenschaftlern vom Göttinger Max-Planck-Institut für biophysikalische Chemie unter Leitung von Prof. Reinhard Lührmann ist es nun erstmals gelungen, aktive Spleißosomen-Komplexe zu isolieren. „Spleißsomen-Komplexe direkt bei ihrer Arbeit untersuchen zu können, ermöglicht uns neue detaillierte Einblicke in den Mechanismus des Spleißens. Dabei können wir auch genau bestimmen, welche Proteine der Zelle für diesen Prozess unentbehrlich sind“, erklärt Henning Urlaub, einer der am Projekt beteiligten Forschungsgruppenleiter. Mit Hilfe der stabilen Spleißosomen-Komplexe können Wissenschaftler das Spleißosom zudem auch strukturell im aktiven Zustand untersuchen. Die räumliche Struktur des Spleißosoms „in Aktion“ zu kennen, sei eine wesentliche Voraussetzung, im Detail zu verstehen, wie es funktioniert, so die Wissenschaftler.

Durch unterschiedliche Verknüpfung und geschicktes Überspringen bestimmter Teilabschnitte der Bauanleitung ermöglicht das Spleißen, eine schier unendliche Vielfalt von Proteinen aus einem begrenzten Vorrat an DNA herzustellen. Für die komplexen Aufgaben, die die Zellen höher entwickelter Organismen ausführen, ist diese Proteinvielfalt unentbehrlich. Somit ist nicht verwunderlich, dass eine Vielzahl von Krankheiten – darunter viele bösartige Tumorkrankheiten und neurodegenerative Erkrankungen – auf Fehler im Spleißen der Boten-RNA zurückzuführen sind. Die Funktion und Dynamik des Spleißprozesses im molekularen Detail zu kennen, könnte daher zukünftig auch dazu beitragen, Therapien weiterzuentwickeln und neue Therapieansätze zu ermöglichen.

Kontakt:
Prof. Dr. Reinhard Lührmann,
Max-Planck-Institut für biophysikalische Chemie,
Tel.: +49 551 201-1407,
Fax: +49 551 201-1197,
E-Mail: reinhard.luehrmann@mpi-bpc.mpg.de
Dr. Henning Urlaub,
Max-Planck-Institut für biophysikalische Chemie,
Tel.: +49 551 201-1060,
Fax: +49 551 201-1197,
E-Mail: henning.urlaub@mpi-bpc.mpg.de
Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit,
Max-Planck-Institut für biophysikalische Chemie,
Tel.: +49 551 201-1304,
Fax: +49 551 201-1151,
E-Mail: pr@mpibpc.mpg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer