Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Lösungsansätze für Probleme im Schienenverkehr

09.12.2003


DFG-Schwerpunktprogramm legt Abschlussbericht vor



Schneller, stärker, schwerer. Im Eisenbahnverkehr ist in den letzten Jahrzehnten die Fahrgeschwindigkeit, die Antriebsleistung und die Achslast kontinuierlich erhöht worden. Diese wachsenden Belastungen führen zu Schädigungen und Verschiebungen der Schottersteine unter den Schwellen sowie im gesamten Untergrund. Die dabei entstehenden Gleisverformungen verursachen einen ungleichförmigen Profilverschleiß an den Rädern sowie Schäden auf Lauffläche von Rad und Schiene. Dies beeinträchtigt nicht nur den Fahrkomfort, sondern auch die Sicherheit und kann im Extremfall zu katastrophalen Unfällen wie 1998 in Eschede führen. Zusätzlich werden Wartungsarbeiten entlang der Gleise in immer kürzeren Abständen nötig. Dies führt zu hohen Instandhaltungskosten. Das Schwerpunktprogramm "Systemdynamik und Langzeitverhalten von Fahrwerk, Gleis und Untergrund" setzte sich zum Ziel, diese Belastungsvorgänge wissenschaftlich zu beschreiben und mit den erarbeiteten Lösungsansätzen langfristig zu Verbesserungen im Bahnverkehr beizutragen. Die Deutsche Forschungsgemeinschaft (DFG) förderte das Schwerpunktprogramm von 1996 bis 2002 mit mehr als sechs Millionen Euro.



Im Gegensatz zu den bisher eher detailorientierten Untersuchungen nahmen die Forscher in diesem Schwerpunktprogramm das Gesamtsystem in den Blick. Wissenschaftlerinnen und Wissenschaftler von 15 Universitäten und weiteren wissenschaftlichen Einrichtungen untersuchten die dynamischen Wechselwirkungen von Fahrzeug, Gleis und Untergrund sowie das Langzeitverhalten der Komponenten des Gesamtsystems.

Bei Zugfahrten wirken starke Kräfte auf Schienen, Schwellen und Untergrund ein. Diese verursachen unter den Schwellen so genannte Setzungen. Das bedeutet, dass die einzelnen Schottersteine sich nach unten und zur Seite verschieben und somit unter den Schwellen Hohlräume entstehen. Fährt ein Zug über diese hohlgelagerten Schwellen, führt dies zu hohen dynamischen Belastungen an Rädern und Schienen, die wiederum auf den Schotter zurück übertragen werden. Bisher konnten diese Vorgänge wissenschaftlich nur unzureichend beschrieben und berechnet werden. Im Schwerpunktprogramm testeten die Forscher unterschiedliche Belastungssituationen an Versuchsanordnungen, die teilweise sogar im Maßstab 1:1 gebaut waren. Aufgrund der erzielten Messergebnisse entwickelten sie neue Rechenmodelle für das Verhalten des Schotters. So konnten die Ingenieure der Universität Karlsruhe die elastische Federwirkung der Schotterschicht exakter beschreiben. Parallel dazu erstellte die Bundesanstalt für Materialforschung und -prüfung ein neues Setzungsmodell und Forscher an der Universität Hannover entwickelten neue Simulationswerkzeuge. Diese Modelle flossen in weiterführende Simulationen ein, die das Ziel hatten, den Schichtaufbau des Schotters zu optimieren. Den Wissenschaftlern der Technischen Universität Berlin gelang es, die Wechselwirkungen der einzelnen Komponenten von Untergrund, Gleis und Fahrzeug zu berücksichtigen und miteinander zu verknüpfen. Diese Erkenntnisse könnten dazu beitragen, den Schotter zukünftig so zu schichten, dass eine stabilere Schüttung entsteht. Dadurch würden die zeitlichen Abstände der Gleisinstandsetzung vergrößert und die Kosten gesenkt.

Der Kontakt von Rad und Schiene stellt die zentrale Verbindung bei Schienenfahrzeugen dar. Um die Wechselwirkung zwischen Fahrzeug und Schiene beschreiben zu können, müssen die Reibungskräfte berechnet werden, die beim Beschleunigen und Abbremsen entstehen und den Verschleiß an Rad und Schiene verursachen. Ingenieure der Technischen Universität Dresden entwickelten ein neues Berechnungsverfahren für diese Vorgänge, mit dem sich auch Rückschlüsse auf den Prozess der Materialermüdung ziehen lassen.

Im Blickpunkt der Forschungen stand neben den Wechselwirkungen auch das Langzeitverhalten von Untergrund, Gleis und Fahrwerk. Forscher der Technischen Universität Darmstadt untersuchten experimentell, wie sich die Gleise bei Verformungen des Untergrundes langfristig verändern, und entwickelten entsprechende Rechenmodelle. An den Universitäten Stuttgart, Braunschweig und Rostock wurde auch das Langzeitverhalten der Räder unter verschiedenen Beanspruchungen simuliert. Ein besonderer Schwerpunkt lag dabei auf dem Phänomen der so genannten "unrunden Räder". Aufgrund eines ungleichförmigen Profilverschleißes an den Rädern entstehen diese Verformungen. Sie können zu einem kurzfristigen Abheben der Räder sowie zu einem deutlichen Brummgeräusch führen, was für den Fahrgast eine starke Komforteinbuße darstellt. Die Ergebnisse der Simulationen zeigen, dass dieser ungleichförmige Verschleiß auch ohne Gleisverformungen auftreten kann und vermutlich von der Geschwindigkeit abhängig ist. Die Stuttgarter Wissenschaftler erarbeiteten daher Vorschläge für neue Radkonstruktionen.

Die Untersuchungen aus den einzelnen Teilprojekten des Schwerpunktprogramms lieferten Ergebnisse, die mögliche Grundlagen für zukünftige technische Entwicklungen in Konstruktion, Wartung und Reparatur bieten und damit langfristige Problemlösungen im Bahnverkehr versprechen.

Weitere Informationen erteilt:

Prof. Dr.-Ing. Karl Popp
Institut für Mechanik der Universität Hannover
Tel.: 0511/762-4161
Email: popp@ifm.uni-hannover.de

Dr. Eva-Maria Streier | idw
Weitere Informationen:
http://www.uni-hannover.de

Weitere Berichte zu: Schiene Schwerpunktprogramm Untergrund

Weitere Nachrichten aus der Kategorie Verkehr Logistik:

nachricht Smarte Datenanalyse für Verkehr in Stuttgart
28.02.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht HIGH-TOOL unterstützt Verkehrsplanung in Europa
22.02.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Verkehr Logistik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten