Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Lösungsansätze für Probleme im Schienenverkehr

09.12.2003


DFG-Schwerpunktprogramm legt Abschlussbericht vor



Schneller, stärker, schwerer. Im Eisenbahnverkehr ist in den letzten Jahrzehnten die Fahrgeschwindigkeit, die Antriebsleistung und die Achslast kontinuierlich erhöht worden. Diese wachsenden Belastungen führen zu Schädigungen und Verschiebungen der Schottersteine unter den Schwellen sowie im gesamten Untergrund. Die dabei entstehenden Gleisverformungen verursachen einen ungleichförmigen Profilverschleiß an den Rädern sowie Schäden auf Lauffläche von Rad und Schiene. Dies beeinträchtigt nicht nur den Fahrkomfort, sondern auch die Sicherheit und kann im Extremfall zu katastrophalen Unfällen wie 1998 in Eschede führen. Zusätzlich werden Wartungsarbeiten entlang der Gleise in immer kürzeren Abständen nötig. Dies führt zu hohen Instandhaltungskosten. Das Schwerpunktprogramm "Systemdynamik und Langzeitverhalten von Fahrwerk, Gleis und Untergrund" setzte sich zum Ziel, diese Belastungsvorgänge wissenschaftlich zu beschreiben und mit den erarbeiteten Lösungsansätzen langfristig zu Verbesserungen im Bahnverkehr beizutragen. Die Deutsche Forschungsgemeinschaft (DFG) förderte das Schwerpunktprogramm von 1996 bis 2002 mit mehr als sechs Millionen Euro.



Im Gegensatz zu den bisher eher detailorientierten Untersuchungen nahmen die Forscher in diesem Schwerpunktprogramm das Gesamtsystem in den Blick. Wissenschaftlerinnen und Wissenschaftler von 15 Universitäten und weiteren wissenschaftlichen Einrichtungen untersuchten die dynamischen Wechselwirkungen von Fahrzeug, Gleis und Untergrund sowie das Langzeitverhalten der Komponenten des Gesamtsystems.

Bei Zugfahrten wirken starke Kräfte auf Schienen, Schwellen und Untergrund ein. Diese verursachen unter den Schwellen so genannte Setzungen. Das bedeutet, dass die einzelnen Schottersteine sich nach unten und zur Seite verschieben und somit unter den Schwellen Hohlräume entstehen. Fährt ein Zug über diese hohlgelagerten Schwellen, führt dies zu hohen dynamischen Belastungen an Rädern und Schienen, die wiederum auf den Schotter zurück übertragen werden. Bisher konnten diese Vorgänge wissenschaftlich nur unzureichend beschrieben und berechnet werden. Im Schwerpunktprogramm testeten die Forscher unterschiedliche Belastungssituationen an Versuchsanordnungen, die teilweise sogar im Maßstab 1:1 gebaut waren. Aufgrund der erzielten Messergebnisse entwickelten sie neue Rechenmodelle für das Verhalten des Schotters. So konnten die Ingenieure der Universität Karlsruhe die elastische Federwirkung der Schotterschicht exakter beschreiben. Parallel dazu erstellte die Bundesanstalt für Materialforschung und -prüfung ein neues Setzungsmodell und Forscher an der Universität Hannover entwickelten neue Simulationswerkzeuge. Diese Modelle flossen in weiterführende Simulationen ein, die das Ziel hatten, den Schichtaufbau des Schotters zu optimieren. Den Wissenschaftlern der Technischen Universität Berlin gelang es, die Wechselwirkungen der einzelnen Komponenten von Untergrund, Gleis und Fahrzeug zu berücksichtigen und miteinander zu verknüpfen. Diese Erkenntnisse könnten dazu beitragen, den Schotter zukünftig so zu schichten, dass eine stabilere Schüttung entsteht. Dadurch würden die zeitlichen Abstände der Gleisinstandsetzung vergrößert und die Kosten gesenkt.

Der Kontakt von Rad und Schiene stellt die zentrale Verbindung bei Schienenfahrzeugen dar. Um die Wechselwirkung zwischen Fahrzeug und Schiene beschreiben zu können, müssen die Reibungskräfte berechnet werden, die beim Beschleunigen und Abbremsen entstehen und den Verschleiß an Rad und Schiene verursachen. Ingenieure der Technischen Universität Dresden entwickelten ein neues Berechnungsverfahren für diese Vorgänge, mit dem sich auch Rückschlüsse auf den Prozess der Materialermüdung ziehen lassen.

Im Blickpunkt der Forschungen stand neben den Wechselwirkungen auch das Langzeitverhalten von Untergrund, Gleis und Fahrwerk. Forscher der Technischen Universität Darmstadt untersuchten experimentell, wie sich die Gleise bei Verformungen des Untergrundes langfristig verändern, und entwickelten entsprechende Rechenmodelle. An den Universitäten Stuttgart, Braunschweig und Rostock wurde auch das Langzeitverhalten der Räder unter verschiedenen Beanspruchungen simuliert. Ein besonderer Schwerpunkt lag dabei auf dem Phänomen der so genannten "unrunden Räder". Aufgrund eines ungleichförmigen Profilverschleißes an den Rädern entstehen diese Verformungen. Sie können zu einem kurzfristigen Abheben der Räder sowie zu einem deutlichen Brummgeräusch führen, was für den Fahrgast eine starke Komforteinbuße darstellt. Die Ergebnisse der Simulationen zeigen, dass dieser ungleichförmige Verschleiß auch ohne Gleisverformungen auftreten kann und vermutlich von der Geschwindigkeit abhängig ist. Die Stuttgarter Wissenschaftler erarbeiteten daher Vorschläge für neue Radkonstruktionen.

Die Untersuchungen aus den einzelnen Teilprojekten des Schwerpunktprogramms lieferten Ergebnisse, die mögliche Grundlagen für zukünftige technische Entwicklungen in Konstruktion, Wartung und Reparatur bieten und damit langfristige Problemlösungen im Bahnverkehr versprechen.

Weitere Informationen erteilt:

Prof. Dr.-Ing. Karl Popp
Institut für Mechanik der Universität Hannover
Tel.: 0511/762-4161
Email: popp@ifm.uni-hannover.de

Dr. Eva-Maria Streier | idw
Weitere Informationen:
http://www.uni-hannover.de

Weitere Berichte zu: Schiene Schwerpunktprogramm Untergrund

Weitere Nachrichten aus der Kategorie Verkehr Logistik:

nachricht Aus dem Labor auf die Schiene: Forscher des HI-ERN planen Wasserstoffzüge mit LOHC-Technologie
19.04.2018 | Forschungszentrum Jülich

nachricht HyperloopTeam aus Oldenburg und Emden in die dritte Runde gestartet
27.03.2018 | Hochschule Emden/Leer

Alle Nachrichten aus der Kategorie: Verkehr Logistik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schreibgeschwindigkeit: Terahertz

25.04.2018 | Informationstechnologie

Demographie beeinflusst Brutfürsorge bei Regenpfeifern

25.04.2018 | Biowissenschaften Chemie

Die Zukunft des Fliegens auf dem Prüfstand

25.04.2018 | Maschinenbau

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics