Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Turbinen robotergestützt reparieren

03.06.2013
Verdichter- und Turbinenschaufeln sind wichtige Bauteile von Flugzeugtriebwerken und Gasturbinen. Im Schadensfall ist eine Reparatur oft günstiger als der Neukauf. Doch die Prozesse sind aufwendig. Ein robotergestütztes Verfahren sorgt jetzt für mehr Effizienz.

Die deutsche Turbomaschinenbranche boomt. In den vergangenen 25 Jahren konnte sie ihren Anteil am Weltmarkt von 15 auf 30 Prozent verdoppeln. Immer wichtiger für die Hersteller wird das Servicegeschäft, also Instandhaltungs- und Wartungsarbeiten (englisch: Maintenance, Repair and Overhaul, kurz MRO).


An der Schleifstation bessert der Roboter automatisiert die beschädigten Stellen einer Turbinenschaufel aus. (© IWF TU Berlin)

Besonders beanspruchte Teile der Turbomaschinen sind die Schaufeln in Verdichter und Turbine. Ihre Aufgabe ist es, die Strömungsenergie in mechanische Energie umzuwandeln. Sie sorgt dafür, dass Flugzeugtriebwerke den nötigen Schub oder Kraftwerksgeneratoren ausreichend Strom erzeugen.

»Schäden an Schaufeln von Flugzeugturbinen entstehen zum Beispiel durch Verschleiß aufgrund Schwingung und Reibung oder Erosion durch Sand- und Staubpartikel. Weitere Auslöser sind harte Landungen, wenn einzelne Triebwerkskomponenten einander berühren oder größere Objekte, die in das Triebwerk einschlagen«, erklärt Martin Bilz, Leiter »Fertigungstechnologien« am Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK in Berlin. Die geometrisch komplexen, meist aus titan- oder nickellegiertem Stahl bestehenden Bauteile verbiegen oder reißen ein, der Luftstrom ist nicht mehr optimal. Das kann dazu führen, dass die Leistung der Triebwerke abfällt und der Spritverbrauch steigt.

Zeitaufwendige Handarbeiten

Die beschädigten Bauteile zu reparieren lohnt sich. Eine einzelne Turbinenschaufel kann je nach Stufe und Triebwerksgröße mehrere tausend Euro kosten. Bei bis zu 80 Schaufeln pro Maschine wären die Betreiber der Anlagen schnell mit sehr hohen Summen konfrontiert. Die Reparatur ist dagegen über 50 Prozent günstiger. Doch deren Prozesse sind sehr aufwendig. Die einzelnen Arbeitsschritte lassen sich nicht einfach in die größtenteils automatisierte Serienfertigung integrieren. Spezialisten bearbeiten die Werkstücke per Hand oder mit speziell eingerichteten Werkzeugmaschinen. Abhängig von deren Größe kann es von mehreren Stunden bis zu einigen Tagen dauern, bis eine einzelne Schaufel wieder Instand gesetzt ist. Aufgrund der strengen Qualitätssicherung in der Luftfahrtindustrie stehen beispielsweise einzelne rotierende Triebwerkskomponenten oft erst nach zwei bis drei Wochen wieder zur Verfügung.

Im Rahmen des Fraunhofer-Innovationsclusters MRO setzten sich die Forschungseinrichtungen IPK und das Institut für Werkzeugmaschinen und Fabrikbetrieb IWF der TU Berlin deshalb zum Ziel, ein automatisiertes, robotergestütztes Verfahren zu entwickeln. »Während Werkzeugmaschinen gleichbleibend teuer sind, werden Roboter immer günstiger und sind mittlerweile auch für Bearbeitungsaufgaben einsetzbar«, begründet Bilz den Ansatz der Institute. Den Forschern zur Seite standen Spezialisten von Turbomaschinenherstellern wie MAN, MTU, Rolls-Royce und Siemens. Gemeinsam mit weiteren Partnern aus Wirtschaft und Forschung gelang es dem IPK, nicht nur einzelne Prozessschritte für die Automatisierung fit zu machen. Bilz und seine Kollegen entwickelten auch ein Verfahren, bei dem ein Roboter innerhalb einer einzelnen Fertigungszelle mehrere Reparaturstationen durchläuft. Das Besondere: Der Roboter hat das Bauteil zu jeder Zeit fest im Griff und wendet sich den – in einem Umkreis von etwa 15 Quadratmetern um ihn herum gelegenen – Stationen einzeln zu. Er reinigt das Bauteil, erfasst seine Geometrie und die Fehlstellen und bearbeitet es spanend nach.

»Die robotergestützte Fertigungszelle ist nicht nur ein gutes Beispiel für ressourcenschonende und energieeffiziente MRO-Prozesse, sondern hat auch Impulse für die Neufertigung von Turbomaschinenkomponenten gebracht. Es macht beispielsweise die Reparatur von Verdichterschaufeln genauer, schneller und günstiger. Wir wollen nun sehen, dass die Technologie auch rasch in den Fertigungshallen der Industrie ankommt«, beschreibt Bilz die Bedeutung seiner Entwicklung für die Industrie. Wissenschaftler des IPK zeigen das Verfahren auf der Paris Air Show (SIAE) vom 17. bis 23. Juni 2013 in Paris-Le Bourget (Halle 1, Stand 316).

Fraunhofer treibt das Thema weiter voran: Ende Mai startete das neue Innovationscluster »Life Cycle Engineering für Turbomaschinen«. Mit dabei sind neben dem IPK die beiden Berliner Fraunhofer-Institute für Zuverlässigkeit und Mikrointegration IZM und für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI sowie das Dresdner für Keramische Technologien und Systeme IKTS. Bilz fasst die Inhalte des Clusters wie folgt zusammen: »Unser Ziel ist es, energieeffiziente und ressourcenschonende Technologien für alle Lebenszyklen von Turbomaschinen bereitzustellen. Neben MRO betrachten wir hier auch die vorgelagerten Prozessschritte Design und Produktion. Im Mittelpunkt stehen dabei Triebwerke in der Luftfahrt und Gasturbinen in der Energieerzeugung.«

| Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2013/juni/turbinen-robotergestuetzt-reparieren.html

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Granulare Materie blitzschnell im Bild
21.09.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Sprühtrocknung: Wirkstoffe passgenau verkapseln
01.09.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie