Neues Verfahren misst zuverlässig Größe und Geschwindigkeit von Partikeln in Strömungen

Wissenschaftler der TU Darmstadt haben ein neues Verfahren entwickelt, um die Größe und Geschwindigkeit von Tropfen und Partikeln in einer Strömung zu messen. Das neue Zählverfahren misst zuverlässig auch nichttransparente Partikel und Tropfen von Suspensionen oder Emulsionen. Infografik: TU Darmstadt<br>

Das neue Zählverfahren misst zuverlässig auch nichttransparente Partikel und Tropfen von Suspensionen oder Emulsionen. Industrielle Anwendungsgebiete ergeben sich unter anderem in der Sprühtrocknung, bei der Spritzlackierung oder bei Mischvorgängen in der Lebensmittelherstellung.

Die Charakterisierung von Tropfen und Partikeln in einer Strömung steht im Zentrum zahlreicher verfahrenstechnischer Aufgaben. Gleichwohl sind bisherige Messverfahren ungeeignet für die zuverlässige Erfassung nichttransparenter Partikel oder Tropfen von Suspensionen und Emulsionen. Nun haben Wissenschaftler am Fachgebiet Strömungslehre und Aerodynamik der TU Darmstadt das bereits bekannte Zeitverschiebungsverfahren so weiterentwickelt, dass solche Messungen in technischen Systemen zuverlässig und mit wenig apparativem Aufwand möglich sind.

Dabei konnten die Forscher die bisherige optische Konfiguration wesentlich vereinfachen und verkleinern, sodass eine äußerst kompakte Bauweise für den industriellen Einsatz möglich ist. Das verbesserte Zeitverschiebungsverfahren lässt sich sowohl in Vorwärts- als auch Rückwärtsstreuverfahren aufbauen und ist somit leicht für spezielle Aufgaben anzupassen. Zudem kann das Verfahren nicht nur Größe und Geschwindigkeit erfassen, sondern in vielen Fällen auch den Brechungsindex des Partikels messen, um dadurch zwischen verschiedenen Materialien oder Phasen unterscheiden zu können.

Das Messprinzip basiert auf der Lichtstreuung von Partikeln an einem dünnen Lichtstrahl, dessen Strahlleistung einen mathematisch beschreibbaren Intensitätsverlauf aufweist. Das beleuchtete Partikel streut das Licht mit der Intensität in Abhängigkeit von optischen Eigenschaften des Partikels und dem Winkel zum Beobachtungspunkt. Bewegt sich ein Partikel durch den Lichtstrahl, wird die an dem Partikel gestreute Intensität zusätzlich eine Funktion der Zeit, die mit Hilfe eines Photo-Detektors gemessen werden kann.

Das vergleichsweise einfache Messprinzip und die Umsetzung mit Laserdioden ermöglichen eine äußerst kompakte und kostengünstige Bauweise, die für den industriellen Einsatz ideal ist. Weitere Vorteile sind die Flexibilität hinsichtlich der Lichtquelle-Detektor-Anordnung und die Möglichkeit der simultanen Bestimmung von Partikelgröße, Geschwindigkeit und Brechungsindex.

Die TU Darmstadt stellt das neue Verfahren vom 18. bis 22. Juni auf der Achema 2012 in Frankfurt (Halle 9.2, Stand A66) vor.

Weitere Informationen und Kontakt:
Prof. Dr.-Ing. Cameron Tropea
Telefon: 06151/16-64227
ctropea@sla.tu-darmstadt.de
MI-Nr. 48/2012, csi

Media Contact

Jörg Feuck idw

Weitere Informationen:

http://www.tu-darmstadt.de

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer