Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lebende Zellen eindeutig und schnell analysieren

02.04.2014

Um Entzündungen, Tumore oder Stammzellen zu untersuchen, analysieren Mediziner lebende Zellen. Nicht-invasive optische Verfahren, wie die Raman-Spektroskopie, beschleunigen den Prozess. Forscher haben die Technologie zur Industriereife gebracht.

Das Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart kann mit Hilfe der Raman-Spektroskopie lebende Zellen schnell und eindeutig analysieren. Das nicht-invasive optische Verfahren, das unterschiedliche Materialien an ihrem molekularen Fingerabdruck erkennt, wird bislang vor allem zur Qualitätskontrolle von Medikamenten und pharmazeutischen Substanzen eingesetzt.


Das optische Analysesystem des IGB: Die vom Raman-Spektroskop (rechts im Hintergrund) aufgezeichneten Spektren werden auf einem Bildschirm graphisch dargestellt. Mit der kleinen Box steuert die Wissenschaftlerin den Laser.

© Fraunhofer IGB

Durch die Forschungsarbeiten des IGB können nun auch Biologen und Biomediziner diese Technologie nutzen. Sie eignet sich, um lebende Zellen zu untersuchen, ohne in diese eingreifen oder diese – zum Beispiel durch Farbmarker – verändern zu müssen. Um Stammzellen zu charakterisieren oder Gewebeveränderungen zu identifizieren, die von Tumoren, Entzündungen, Pilzen oder Bakterien verursacht werden, reicht es nun aus, das Raman-Spektrum – ein spezielles, aussagekräftiges Energiespektrum – der einzelnen Zellen zu ermitteln.

»Durch gemeinsame Projekte mit Universitäten, mit Industriepartnern und dem Land Baden-Württemberg hat sich das IGB hier in den letzten Jahren ein umfangreiches Know-how aufgebaut und die Technologie von der Grundlagenforschung zur Industriereife gebracht. Mittlerweile können wir nicht nur einzelne Zellen, sondern ganze Gewebestrukturen und Organe auf diese Weise untersuchen. Jetzt wollen wir die Technologie weiter verfeinern und noch mehr Anwendungen erschließen«, sagt Prof. Dr. Katja Schenke-Layland vom IGB.

Unverwechselbares Raman-Spektrum

Die Zellbiologen des IGB nutzen ein speziell entwickeltes Raman-Spektroskop, das sie zusammen mit den Physikern des Fraunhofer-Instituts für Physikalische Messtechnik IPM in Freiburg konstruiert haben. Das Gerät ist handlich und kann flexibel für unterschiedlichste wissenschaftliche Fragestellungen genutzt werden. Die ermittelten Spektren sammeln die Wissenschaftler in einer Datenbank. »Jede Zelle hat ein individuelles unverwechselbares Raman-Spektrum. Ärzte können Zellproben ihrer Patienten mit unserer Datenbank abgleichen und schneller diagnostizieren«, sagt Schenke-Layland. Die Technologie ist bereits bei Industriepartnern im praktischen Einsatz. Derzeit arbeiten die Wissenschaftler an einem Schnelltest zur Krebsdiagnose. »Mit mobilen Raman-Spektroskopen könnten Ärzte während der Operation eindeutig sagen, ob der Patient Krebs hat oder nicht. Einfach indem sie die Zellprobe mit der Datenbank abgleichen«, so Schenke-Layland.

Noch ist die Krebsdiagnose kompliziert und langwierig: Nach der Entnahme der Gewebebiopsie muss diese erst für die weitere Untersuchung präpariert werden – zum Beispiel durch entsprechendes Zuschneiden oder Färben, um Biomarker zu kennzeichnen. »Dies erfordert aber immer, in die Probe einzugreifen und diese möglicherweise zu manipulieren«, so Schenke-Layland. Die Probe wird dann an einen Pathologen weitergereicht, der analysiert, ob das Gewebe bösartige oder gutartige Zellen enthält. Diese Methode ist fehleranfällig und kann im schlechtesten Fall dazu führen, dass die Probe am Ende für andere Methoden unbrauchbar ist. »Mit dem softwarebasierten Abgleich über unsere Datenbank werden menschliche Fehler minimiert«, so Schenke-Layland.

Einsatz bei Krebsdiagnose und regenerativer Medizin

Für die nicht-invasive optische Technologie gibt es zahlreiche weitere Anwendungen – insbesondere bei der regenerativen Medizin. Dort soll künstlich hergestelltes Gewebe kranke Zellen bei Patienten ersetzen, beziehungsweise helfen, dieses zu heilen. Dafür müssen gewebespezifische Zellen, beispielsweise aus Knochenmark entnommenen Stammzellen, gewonnen werden. Da Knochenmark jedoch aus sehr unterschiedlichen Zellen besteht, ist es kompliziert, adulte Stammzellen von gewöhnlichen Gewebezellen zu unterscheiden. Außerdem müssen die Stammzellen sauber identifiziert und getrennt werden. Geschieht das nicht, mischen sich andere Zelltypen in das gezüchtete Implantat und es besteht die Gefahr, dass der Körper nicht wie gewünscht darauf reagiert, im schlimmsten Fall sogar Tumore bildet.

Die Raman-Spektroskopie ist ein Verfahren, um verschiedene Materialien eindeutig zu identifizieren und voneinander zu unterscheiden. Sie beruht auf der Wechselwirkung von elektromagnetischer Strahlung und Materie. Strahlt man diese mit Licht einer zuvor genau definierten Frequenz an, reagieren einige der Photonen des Lichts mit den Molekülen der Materie und verschieben dadurch ihr eigenes Energiespektrum. Diese Frequenzverschiebung, oder inelastische Lichtstreuung, zeichnen Raman-Spektroskope mit Hilfe eines Lasers auf. Der Effekt ist nach dem indischen Physiker C.V. Raman benannt, der für seine Arbeiten 1930 mit dem Nobelpreis für Physik ausgezeichnet wurde. Die Verschiebungen unterscheiden sich je nach Material und geben diesem jeweils einen unverwechselbaren spektralen Fingerabdruck.

Prof. Dr. Katja Schenke-Layland | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2014/April/lebende-zellen-analysieren.html

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Sprühtrocknung: Wirkstoffe passgenau verkapseln
01.09.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht Smarte Sensoren steuern Industrieprozesse von morgen
31.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie