Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biodegradierbar, osteo-induktiv und maßgeschneidert: Eine neue Generation von Implantaten auf dem Vormarsch

20.05.2010
Forscher des Fraunhofer-Instituts für Lasertechnik ILT haben im Rahmen des BMBF geförderten Verbundprojekts RESOBONE ein formgebendes Verfahren zur Herstellung biodegradierbarer Implantate mittels Laserstrahl entwickelt.

Das generative Fertigungsverfahren ermöglicht die Anpassung des Implantats an den individuellen Defekt. Das interkonnektive Porensystem sorgt für ein verbessertes Einwachsverhalten von Gefäßen und Bindegewebszellen in das Implantat und somit für seine gute Biodegradierbarkeit.

Die Regenerationsfähigkeit von Knochen ist begrenzt. Sind sie durch eine Krankheit wie zum Beispiel einen Tumor oder einen Unfall zu stark geschädigt, müssen sie durch Implantate ersetzt werden. Derzeit arbeiten Chirurgen hauptsächlich mit permanenten Titan-Implantaten. Um ihr Einwachsverhalten und ihre Verträglichkeit zu verbessern, entwickelten Forscher des Fraunhofer ILT ein Verfahren zur Herstellung poröser Implantate aus einer Titan-Legierung. Gefertigt werden diese Implantate mit dem Selective Laser Melting (SLM), einem generativen Laserverfahren, das bereits Anfang der Neunziger Jahre von den Aachener Forschern entwickelt und für den medizinischen Bereich weiter spezifiziert wurde. Im Duisburger St. Johannes Hospital wurde 2008 erstmals einer Patientin eine mit SLM gefertigte Hüftpfanne erfolgreich eingesetzt. Die 35-Jährige benötigte aufgrund einer extremen Hüftverformung eine Sonderanfertigung, die dank des innovativen Fertigungsverfahrens realisiert werden konnte. Mittlerweile werden von dem beteiligten Projektpartner jährlich 30-40 Implantate mit dem SLM-Verfahren hergestellt.

Häufig ist es gar nicht nötig oder sogar hinderlich, dass Implantate langfristig in ihrer Ursprungsform im Körper des Patienten verbleiben. Besonders im Bereich der Kinderchirurgie sind permanente Implantate problematisch, da sie durch das Wachstum der Kinder schon nach kurzer Zeit zu klein sein können und operativ entfernt beziehungsweise ausgetauscht werden müssen. Mediziner fordern daher biodegradierbare Implantate mit osteo-induktiven Eigenschaften: Implantate, die sich mit der Geschwindigkeit des Knochenwachstums abbauen und dieses gleichzeitig gezielt anregen. Nach einiger Zeit sollen sie komplett durch körpereigenes Material ersetzt werden und den Heilungsprozess auf diese Weise beschleunigen. Zudem soll das Implantat dem Defekt individuell angepasst werden und eine bestmögliche Verträglichkeit im Körper aufweisen. Ein großer Vorteil beim Einsatz von degradierbaren Implantaten besteht darin, dass es im Falle eines krankheitsbedingten Defekts nur noch eines einzigen operativen Eingriffs am Patienten bedarf.

Feinste Kanäle sorgen für verbesserte Degradierbarkeit

Gemeinsam mit dem Universitätsklinikum Aachen, dem Lehrstuhl für Gesteinshüttenkunde der RWTH Aachen und dem Lehr- und Forschungsgebiet Zahnärztliche Werkstoffkunde und Biomaterialforschung (ZWBF) der RWTH Aachen haben sich Forscher des Fraunhofer ILT dieser Aufgabe gestellt. Im Rahmen des Projekts RESOBONE haben sie auf Basis ihrer Erfahrungen mit SLM-gefertigten permanenten Implantaten ein Verfahren zur Herstellung biodegradierbarer Implantate entwickelt. Dieses Fertigungsverfahren ermöglicht es, biodegradierbare Implantate vor der Operation hinsichtlich ihrer Makrostruktur individuell an den Defekt des Patienten anzupassen. Die präzise definierte Mikrostruktur des Implantats sorgt schließlich für seine Porösität. Sie ist die Voraussetzung dafür, dass das Implantat mit der Zeit vom Körper resorbiert werden kann. Dazu bedarf es durchgehender Kanäle, so dass Blut und Zellen das Implantat vollständig durchdringen können. „Diese schwammartige Gitterstruktur zu schaffen, stellte die große Herausforderung während der Verfahrensentwicklung dar“, so Simon Höges, Projektleiter am Fraunhofer ILT. „Bislang war die Durchdringung des Implantats durch Körperzellen nur sehr beschränkt möglich. Das neue Verfahren versetzt uns in die Lage, mit einer Genauigkeit von 100 µm Porenkanäle von 500 bis 1000 µm Durchmesser zu generieren. In diesem Zusammenhang spielt auch der Werkstoff, aus dem das Implantat gefertigt wird, eine entscheidende Rolle.“ β-Tricalciumphosphat (β-TCP) bietet sich als Material zur Herstellung biodegradierbarer Implantate an, da es als Bestandteil des menschlichen Knochens für ein optimales Einwachsverhalten im Körper sorgt. Allerdings lässt sich β-TCP aufgrund seiner chemischen Struktur nicht direkt durch Schmelzen verarbeiten. Somit eignet es sich nur bedingt für die Verarbeitung mit dem SLM-Verfahren. „Es galt also, einen Zusatzstoff zu finden, der dem pulverisierten β-TCP beigemischt wird und dessen Vorteile mit einer besseren Schmelzbarkeit vereint. In dem degradierbaren Polymer Polyactid (PLA) haben wir diesen Stoff schließlich gefunden“, erklärt Höges. PLA schmilzt bereits unter 200 °C und eignet sich hervorragend für die Verarbeitung durch SLM. Mit diesem Verbundwerkstoff konnte schließlich die Fertigung des biodegradierbaren Implantats realisiert werden. Seine Basis bildet weiterhin das β-TCP, während das beigemischte PLA für die Formgebung sorgt.

Schicht für Schicht zum persönlichen Implantat

Für die Herstellung des degradierbaren Implantats wird zunächst eine Computertomografie-Aufnahme des bestehenden Knochens angefertigt. Basierend auf den Daten des Defekts werden die Konturen des Implantats virtuell konstruiert. Zusätzlich wird auf Grundlage eines Softwaremodells eine definierte Porenstruktur in das virtuelle Implantat eingebracht. So entsteht eine präzise Vorlage für die Mikro- und die Makrostruktur des zu fertigenden Implantats. Nun kann der eigentliche Fertigungsprozess beginnen: Ein Laserstrahl schmilzt eine hauchdünne Pulverschicht des Werkstoffs durch lokalen Wärmeeintrag gemäß der im Modell vorgegebenen Struktur. Anschließend wird eine weitere Pulverschicht aufgetragen, die ebenfalls mikrometergenau eingeschmolzen wird. Auf diese Weise wird das maßgeschneiderte Implantat schichtweise aus dem Pulverwerkstoff generiert. Materialverluste gibt es dabei nicht, überschüssiges Pulver kann wiederverwendet werden. Das Resultat ist ein biodegradierbares Implantat mit poröser Struktur aus einem Guss.

Auf Basis der in diesem Projekt gewonnenen Erkenntnisse steht mit SLM nun ein reproduzierbares, formgebendes Verfahren zur Verfügung, das das Potenzial zur Fertigung maßgeschneiderter biodegradierbarer Implantate mit definierter Porenstruktur besitzt. Für die Herstellung von Einzelstücken eignet sich das Verfahren ebenso wie für die Kleinserienfertigung. Dabei sind die Anwendungsbereiche vielfältig: Mit SLM lassen sich neben nicht lasttragenden Knochenimplantaten auch biomedizinische Produkte wie biodegradierbare Stents fertigen, die nach Erfüllung ihrer Aufgabe völlig vom Körper resorbiert werden. Auch in der Kieferchirurgie lässt sich das Verfahren zur Rekonstruktion von Defekten im Kieferknochen einsetzen. Derzeit testen Höges und sein Team in Zusammenarbeit mit den Kooperationspartnern vom Lehr- und Forschungsgebiet Zahnärztliche Werkstoffkunde und Biomaterialforschung (ZWBF) weitere Materialien für die Fertigung von Implantaten, um deren Einwachsverhalten zu optimieren.

Die abschließenden Ergebnisse des Verbundprojekts RESOBONE stellt Simon Höges am 14. Juli 2010 im Rahmen eines Seminars im Universitätsklinikum Aachen vor. Des Weiteren sind Vorträge von Projektpartnern zu diesem Thema geplant. Nähere Informationen zu dieser Veranstaltung können Interessenten unter www.ilt.fraunhofer.de im Bereich Messen & Veranstaltungen finden.

Ansprechpartner im Fraunhofer ILT
Für Fragen stehen Ihnen unsere Experten zur Verfügung:
Simon Höges
Rapid Manufacturing
Telefon +49 241 8906-360
simon.hoeges@ilt.fraunhofer.de
Dr. Wilhelm Meiners
Rapid Manufacturing
Telefon +49 241 8906-301
wilhelm.meiners@ilt.fraunhofer.de
Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen
Telefon +49 241 8906-0
Fax +49 241 8906-121

Axel Bauer | idw
Weitere Informationen:
http://www.ilt.fraunhofer.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht 3D-Bilder von Krebszellen im Körper: Medizinphysiker aus Halle stellen neues Verfahren vor
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Innovatives Verfahren zur umweltschonenden Gülleaufbereitung kommt auf den Markt
03.05.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics