Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bessere Fokussierung von Lasern

27.11.2009
Bei modernen Festkörperlasern wie etwa Scheiben- oder Faserlasern lassen sich die Laserstrahlen sehr präzise fokussieren und die Strahlung in flexiblen Glasfasern über Distanzen von 100 Metern und mehr führen.

Dies ermöglicht eine einfache und sichere Handhabung des Laserstrahls und macht die Geräte zu vielseitigen Werkzeugen für die Industrie. Dennoch ist die maximale Übertragungsstrecke begrenzt. Forscher des Instituts für Strahlwerkzeuge (IFSW) der Universität Stuttgart haben nun neuartige Multikern-Glasfasern entwickelt, die längere Übertragungswege für Hochleistungs-Festkörperlaser erlauben.

Die Ursache für die Begrenzung der Übertragungsstrecke von Laserstrahlen in Glasfasern liegt in nichtlinearen Effekten, die bei sehr hohen Leistungsdichten in den Fasern auftreten. Diese können entweder die am Ausgang der Glasfaser verfügbare Leistung deutlich redu-zieren oder sogar zur Beschädigung der Faser beziehungsweise der Laserquelle führen. Je länger die Glasfaser ist, desto geringer ist die Leistungsdichte, ab der die Begrenzungseffekte eintreten. Gleichzeitig nimmt die Bedeutung dieser Effekte mit steigender Qualität der Strahlquellen zu. Da Leistung und Strahlqualität stetig steigen, werden die Limitierungen in der Übertragungslänge dazu führen, dass die hohe Brillanz der künftig kommerziell verfügbaren Hochleistungs-Festkörperlaser nicht voll ausgenutzt werden kann.

Mit dem neuen Faserziehturm der Uni ist es den Forschern des IFSW gelungen, Glasfasern für die Übertragung von Multi-Kilowatt-Laserstrahlung mit beugungsbegrenzter Strahlqualität über Entfernungen von etwa 100 Metern zu entwickeln. Die neuartigen Glasfasern sind singlemodig und besitzen eine effektive Modenfeldfläche von 470 Quadratmikrometern. Singlemodig heißt, dass innerhalb der Faser nur eine Lichtverteilung möglich ist und damit eine gute Fokussierbarkeit der Laserstrahlung bei der Übertragung durch die Glasfaser gewährleistet ist. In mehrmodigen Glasfasern treten aufgrund mehrerer möglicher Verteilungen Übertragungsstörungen auf. Normalerweise steigt die Anzahl der im Faserkern geführten Moden mit zunehmender Querschnittsfläche. Die neue Faser vereint jedoch eine echte Einmodigkeit mit einer großen Fläche. Kommerziell verfügbare vergleichbare Glasfasern besitzen beispielsweise Modenfelder von höchstens 300 Quadratmikrometern und sind gleichzeitig biegeempfindlicher. Die Überlegenheit der Multikernfaser beruht darauf, dass das Laserlicht nicht in einem einzelnen Kern geführt, sondern über 19 kleinere, miteinander gekoppelte Kerne verteilt wird. Die Herausforderung bestand darin, die einzelnen Kerne und deren Anordnung so auszulegen, dass die Gesamtstruktur aus allen Kernen nicht multimodig wird. Diese Eigenschaften der neuen Faser ermöglichen es, höhere Leistungen zu übertragen beziehungsweise längere Übertragungswege zu realisieren, ohne dass dabei die Strahlqualität des Lasers abnimmt. So bleibt die gute Fokussierbarkeit der Festkörperlaser bis zum Werkstück erhalten.

Die Forschungsarbeiten fanden im Rahmen des Programms "Optische Technologien" des vom Bundesministerium für Bildung und Forschung geförderten Projekts "Kohärente Strahlformung für Laserstrahlwerkzeuge" statt und finden ihre Fortsetzung in dem Folgeprojekt "Hochleistungs-Transportfasern für Multi-kW-Laserstrahlung höchster Brillanz".

Ansprechpartner: Prof. Thomas Graf, Institut für Strahlwerkzeuge, Tel. 0711/685-66841, e-mail: graf@ifsw.uni-stuttgart.de

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Kleben ohne Klebstoff - Schnelles stoffschlüssiges Fügen von Metall und Thermoplast
22.02.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics