Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Überraschung bei den C60 Hochtemperatursupraleitern

09.04.2002


Internationales Forscherteam klärt Struktur der C60 -Hochtemperatursupraleiter auf / Neue Herausforderungen für weitere Erhöhung der Sprungtemperatur bei Supraleitern

Fullerene, in denen durch ein elektrisches Feld Ladungsträger induziert werden, gehören neben den auf Kupferoxid basierenden Kupraten zu den Supraleitern mit den höchsten Sprungtemperaturen. Bisher war man davon ausgegangen, dass sich bei den Fullerenen die Sprungtemperatur durch eine Vergrößerung der Gitterkonstante systematisch anheben lässt. Eine interdisziplinäres Forschergruppe um Prof. Martin Jansen, Direktor am Stuttgarter Max-Planck-Institut für Festkörperforschung, ist es jetzt gelungen, die Struktur der Fulleren-Supraleiter mit den höchsten Sprungtemperaturen (C60·2CHCl3 und C60·2CHBr3) aufzuklären. Dabei stellten sie fest, dass der bislang akzeptierte Mechanismus den beobachteten Anstieg der Sprungtemperatur in diesen Supraleitern nicht erklären kann (Science 296, 109, 05. April 2002). Damit stellen sich grundsätzlich neue Fragen zum Verständnis der Supraleitung in Fullerenen.

Die Supraleitung ist einer der faszinierendsten makroskopischen Quanteneffekte. Ein Supraleiter zeichnet sich dadurch aus, dass sein elektrischer Widerstand beim Abkühlen unter eine Temperatur Tc völlig verschwindet, d.h. er leitet elektrischen Strom ohne jegliche Verluste. Dieser Effekt wurde schon 1911 in Quecksilber entdeckt und ist bei vielen Metallen zu beobachten. Im Laufe des 20. Jahrhunderts wurden große Anstrengungen unternommen, um neue Verbindungen zu finden, die sich durch eine möglichst hohe Sprungtemperatur Tc auszeichnen. Die Motivation dahinter ist folgende: Um die Vorteile der verlustfreien Stromleitung technisch nutzen zu können, muss man den Supraleiter bei einer noch tieferen Temperatur als seine Sprungtemperatur halten. Doch je höher die Sprungtemperatur ist, desto einfacher fällt das Kühlen. Typische Sprungtemperaturen für reine Metalle liegen jedoch unterhalb von 10 Grad Kelvin, was eine aufwändige Kühlung mit flüssigem Helium erforderlich macht. Wesentlich einfacher, nämlich mit flüssigem Stickstoff, lässt sich die Supraleitung nutzen, wenn die Sprungtemperatur den Wert von 77 K überschreitet. In diesem Fall spricht man von Hochtemperatur-Supraleitern. Bis zum Jahr 2001 übertrafen einzig die 1986 von Bednortz und Müller entdeckten oxidischen Kuprate diese Grenze von 77 K.

Im Jahr 2001 hat die Familie der Hochtemperatur-Supraleiter Zuwachs bekommen. Es handelt sich bei den neuen Supraleitern jedoch nicht einfach um neue Materialien, die man nur abkühlen muss, damit sie supraleitend werden. Vielmehr sind es elektronische Bauteile, bei denen erst durch das Anlegen einer äußeren Spannung die Voraussetzungen für die Supraleitung geschaffen werden. Diese Bauteile basieren auf Kristallen aus C60-Molekülen, den so genannten Fullerenen oder Buckyballs. Diese Kristalle sind normalerweise isolierend. Legt man jedoch ein starkes elektrisches Feld an, kann man in sie Ladungsträger injizieren und das Material wird in einer dünnen Schicht leitend. Das ist das Prinzip des Feldeffekt-Transistors (FET). Kühlt man ein solches Bauteil ab, verschwindet der elektrische Widerstand unterhalb von 52 K und Supraleitung tritt in diesen Feld-dotierten Fullerenen auf.

Ein ähnliches Verhalten zeigen Kristalle aus C60-Molekülen, die mit Alkalimetall-Atomen chemisch dotiert sind. Diese Materialien unterscheiden sich von den Feld-dotierten Fullerenen hauptsächlich dadurch, dass die Ladungsträger auf chemischem Wege statt durch das Anlegen eines elektrischen Feldes bereitgestellt werden. Von diesen alkali-dotierten Fullerene ist bekannt, dass ihre Sprungtemperatur vom Abstand zwischen benachbarten C60-Molekülen im Kristallgitter abhängt: Je größer der Abstand ist, desto größer ist die Sprungtemperatur. Dies führt man darauf zurück, dass mit wachsendem Abstand zwischen den Molekülen die so genannte Zustandsdichte und damit die Anzahl der Elektronen, die zur Supraleitung beitragen können, wächst. Von daher lag die Vermutung nahe, dass sich auch in den Feld-dotierten Fullerenen die Sprungtemperatur erhöhen lässt, wenn es gelingt, den Abstand zwischen den Molekülen zu vergrößern. Tatsächlich waren auch entsprechende Experimente erfolgreich: Durch Einlagerung (Interkalation) von Chloroform- und Bromoform-Molekülen zwischen die C60-Moleküle gelang es, Sprungtemperaturen von bis zu 117 Grad Kelvin zu erreichen. Allerdings war bis heute die Struktur dieser interkalierten Kristalle bei tiefen Temperaturen und mithin auch ihre Zustandsdichte nicht bekannt.

"Abb.: Struktur der Fulleren-Supraleiter C60·2CHCl3 und C60·2CHBr3: C60 Gruppen in grau, eingelagerte Chloroform- und Bromoform-Moleküle in rot." "Foto: Max-Planck-Institut für Festkörperforschung"

Dieser Fragestellung sind Forscher am Stuttgarter Max-Planck-Institut für Festkörperforschung nachgegangen, zumal die Arbeitsgruppe von Prof. Martin Jansen diese Kristalle bereits 1995 erstmals hergestellt hatte. Zudem waren mit der Röntgenservice-Gruppe von Dr. Dinnebier im Max-Planck-Institut beste Voraussetzungen für eine erfolgreiche Strukturbestimmung gegeben. Die erforderlichen Messungen bei tiefen Temperaturen wurden gemeinsam mit Prof. Peter W. Stephens an der "National Synchrotron Light Source" in Brookhaven/USA durchgeführt. Diese Messdaten erlaubten es den Stuttgarter Strukturspezialisten, die Kristallstruktur der interkalierten Fullerene exakt zu bestimmen. Für die weitere Interpretation dieser Ergebnisse erwies sich die enge interdisziplinäre Verknüpfung von Physik, Chemie und Theorie am Stuttgarter Max-Planck-Institut als sehr nützlich: Die Theoretiker um Dr. Gunnarsson brachten aus ihren bisherigen Arbeiten über alkali-dotierte Fullerene die nötige Erfahrung mit, um aus den Strukturdaten auch die Zustandsdichte der Elektronen in den interkalierten Fullerenen zu bestimmen.

Zur großen Überraschung aller beteiligter Wissenschaftler zeigte sich bei dieser Analyse, dass der beobachtete Anstieg der Sprungtemperatur bei den mit Chlorform- und Bromoform- interkalierten C60-Kristallen - entgegen der bisherigen Annahmen - nicht mit einem Anstieg der elektronischen Zustandsdichte zusammenhängt. Prof. Martin Jansen, der Leiter des Forscherteam meint : "Damit steht fest, die Zustandsdichte ist nicht der einzige wichtige Parameter für die Supraleitung in den Feld-dotierten Fullerenen. Jetzt ist die Theorie gefordert, jene zusätzlichen Effekte zu identifizieren, die tatsächlich zu dem beobachteten Anstieg der Sprungtemperatur führen. Dies könnte völlig neue Perspektiven für die weitere systematische Erhöhung der Sprungtemperatur von Fulleren-Supraleitern eröffnen."

Dr. Bernd Wirsing | Presseinformation

Weitere Berichte zu: Sprungtemperatur Supraleiter Supraleitung Temperatur Zustandsdichte

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Projekt CeGlaFlex: Hauchdünne, bruchsichere und biegsame Keramik und Gläser
24.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Löschbare Tinte für den 3-D-Druck
24.04.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences