Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Überraschung bei den C60 Hochtemperatursupraleitern

09.04.2002


Internationales Forscherteam klärt Struktur der C60 -Hochtemperatursupraleiter auf / Neue Herausforderungen für weitere Erhöhung der Sprungtemperatur bei Supraleitern

Fullerene, in denen durch ein elektrisches Feld Ladungsträger induziert werden, gehören neben den auf Kupferoxid basierenden Kupraten zu den Supraleitern mit den höchsten Sprungtemperaturen. Bisher war man davon ausgegangen, dass sich bei den Fullerenen die Sprungtemperatur durch eine Vergrößerung der Gitterkonstante systematisch anheben lässt. Eine interdisziplinäres Forschergruppe um Prof. Martin Jansen, Direktor am Stuttgarter Max-Planck-Institut für Festkörperforschung, ist es jetzt gelungen, die Struktur der Fulleren-Supraleiter mit den höchsten Sprungtemperaturen (C60·2CHCl3 und C60·2CHBr3) aufzuklären. Dabei stellten sie fest, dass der bislang akzeptierte Mechanismus den beobachteten Anstieg der Sprungtemperatur in diesen Supraleitern nicht erklären kann (Science 296, 109, 05. April 2002). Damit stellen sich grundsätzlich neue Fragen zum Verständnis der Supraleitung in Fullerenen.

Die Supraleitung ist einer der faszinierendsten makroskopischen Quanteneffekte. Ein Supraleiter zeichnet sich dadurch aus, dass sein elektrischer Widerstand beim Abkühlen unter eine Temperatur Tc völlig verschwindet, d.h. er leitet elektrischen Strom ohne jegliche Verluste. Dieser Effekt wurde schon 1911 in Quecksilber entdeckt und ist bei vielen Metallen zu beobachten. Im Laufe des 20. Jahrhunderts wurden große Anstrengungen unternommen, um neue Verbindungen zu finden, die sich durch eine möglichst hohe Sprungtemperatur Tc auszeichnen. Die Motivation dahinter ist folgende: Um die Vorteile der verlustfreien Stromleitung technisch nutzen zu können, muss man den Supraleiter bei einer noch tieferen Temperatur als seine Sprungtemperatur halten. Doch je höher die Sprungtemperatur ist, desto einfacher fällt das Kühlen. Typische Sprungtemperaturen für reine Metalle liegen jedoch unterhalb von 10 Grad Kelvin, was eine aufwändige Kühlung mit flüssigem Helium erforderlich macht. Wesentlich einfacher, nämlich mit flüssigem Stickstoff, lässt sich die Supraleitung nutzen, wenn die Sprungtemperatur den Wert von 77 K überschreitet. In diesem Fall spricht man von Hochtemperatur-Supraleitern. Bis zum Jahr 2001 übertrafen einzig die 1986 von Bednortz und Müller entdeckten oxidischen Kuprate diese Grenze von 77 K.

Im Jahr 2001 hat die Familie der Hochtemperatur-Supraleiter Zuwachs bekommen. Es handelt sich bei den neuen Supraleitern jedoch nicht einfach um neue Materialien, die man nur abkühlen muss, damit sie supraleitend werden. Vielmehr sind es elektronische Bauteile, bei denen erst durch das Anlegen einer äußeren Spannung die Voraussetzungen für die Supraleitung geschaffen werden. Diese Bauteile basieren auf Kristallen aus C60-Molekülen, den so genannten Fullerenen oder Buckyballs. Diese Kristalle sind normalerweise isolierend. Legt man jedoch ein starkes elektrisches Feld an, kann man in sie Ladungsträger injizieren und das Material wird in einer dünnen Schicht leitend. Das ist das Prinzip des Feldeffekt-Transistors (FET). Kühlt man ein solches Bauteil ab, verschwindet der elektrische Widerstand unterhalb von 52 K und Supraleitung tritt in diesen Feld-dotierten Fullerenen auf.

Ein ähnliches Verhalten zeigen Kristalle aus C60-Molekülen, die mit Alkalimetall-Atomen chemisch dotiert sind. Diese Materialien unterscheiden sich von den Feld-dotierten Fullerenen hauptsächlich dadurch, dass die Ladungsträger auf chemischem Wege statt durch das Anlegen eines elektrischen Feldes bereitgestellt werden. Von diesen alkali-dotierten Fullerene ist bekannt, dass ihre Sprungtemperatur vom Abstand zwischen benachbarten C60-Molekülen im Kristallgitter abhängt: Je größer der Abstand ist, desto größer ist die Sprungtemperatur. Dies führt man darauf zurück, dass mit wachsendem Abstand zwischen den Molekülen die so genannte Zustandsdichte und damit die Anzahl der Elektronen, die zur Supraleitung beitragen können, wächst. Von daher lag die Vermutung nahe, dass sich auch in den Feld-dotierten Fullerenen die Sprungtemperatur erhöhen lässt, wenn es gelingt, den Abstand zwischen den Molekülen zu vergrößern. Tatsächlich waren auch entsprechende Experimente erfolgreich: Durch Einlagerung (Interkalation) von Chloroform- und Bromoform-Molekülen zwischen die C60-Moleküle gelang es, Sprungtemperaturen von bis zu 117 Grad Kelvin zu erreichen. Allerdings war bis heute die Struktur dieser interkalierten Kristalle bei tiefen Temperaturen und mithin auch ihre Zustandsdichte nicht bekannt.

"Abb.: Struktur der Fulleren-Supraleiter C60·2CHCl3 und C60·2CHBr3: C60 Gruppen in grau, eingelagerte Chloroform- und Bromoform-Moleküle in rot." "Foto: Max-Planck-Institut für Festkörperforschung"

Dieser Fragestellung sind Forscher am Stuttgarter Max-Planck-Institut für Festkörperforschung nachgegangen, zumal die Arbeitsgruppe von Prof. Martin Jansen diese Kristalle bereits 1995 erstmals hergestellt hatte. Zudem waren mit der Röntgenservice-Gruppe von Dr. Dinnebier im Max-Planck-Institut beste Voraussetzungen für eine erfolgreiche Strukturbestimmung gegeben. Die erforderlichen Messungen bei tiefen Temperaturen wurden gemeinsam mit Prof. Peter W. Stephens an der "National Synchrotron Light Source" in Brookhaven/USA durchgeführt. Diese Messdaten erlaubten es den Stuttgarter Strukturspezialisten, die Kristallstruktur der interkalierten Fullerene exakt zu bestimmen. Für die weitere Interpretation dieser Ergebnisse erwies sich die enge interdisziplinäre Verknüpfung von Physik, Chemie und Theorie am Stuttgarter Max-Planck-Institut als sehr nützlich: Die Theoretiker um Dr. Gunnarsson brachten aus ihren bisherigen Arbeiten über alkali-dotierte Fullerene die nötige Erfahrung mit, um aus den Strukturdaten auch die Zustandsdichte der Elektronen in den interkalierten Fullerenen zu bestimmen.

Zur großen Überraschung aller beteiligter Wissenschaftler zeigte sich bei dieser Analyse, dass der beobachtete Anstieg der Sprungtemperatur bei den mit Chlorform- und Bromoform- interkalierten C60-Kristallen - entgegen der bisherigen Annahmen - nicht mit einem Anstieg der elektronischen Zustandsdichte zusammenhängt. Prof. Martin Jansen, der Leiter des Forscherteam meint : "Damit steht fest, die Zustandsdichte ist nicht der einzige wichtige Parameter für die Supraleitung in den Feld-dotierten Fullerenen. Jetzt ist die Theorie gefordert, jene zusätzlichen Effekte zu identifizieren, die tatsächlich zu dem beobachteten Anstieg der Sprungtemperatur führen. Dies könnte völlig neue Perspektiven für die weitere systematische Erhöhung der Sprungtemperatur von Fulleren-Supraleitern eröffnen."

Dr. Bernd Wirsing | Presseinformation

Weitere Berichte zu: Sprungtemperatur Supraleiter Supraleitung Temperatur Zustandsdichte

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Neues Verfahren zur Inprozesskontrolle in der Warmumformung
18.08.2017 | Fachhochschule Südwestfalen

nachricht Forschungsprojekt zu optimierten Oberflächen von Metallpulver-Spritzguss-Werkzeugen
17.08.2017 | Hochschule Pforzheim

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher entwickeln zweidimensionalen Kristall mit hoher Leitfähigkeit

21.08.2017 | Physik Astronomie

Ein neuer Indikator für marine Ökosystem-Veränderungen - der Dia/Dino-Index

21.08.2017 | Ökologie Umwelt- Naturschutz

Kieler Wissenschaft entwickelt exzellentes Forschungsdatenmanagement

21.08.2017 | Informationstechnologie