Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jenaer Physiker bauen Super-Laser der Zukunft

12.06.2001

Einen der stärksten Laser der Welt bauen Physiker im Institut für Optik und Quantenelektronik der Universität Jena. Ein Petawatt Leistung, das sind eine Billion Kilowatt, soll die nach einem technologisch vollständig neuen Konzept konstruierte Maschine erzeugen - zehnmal mehr als die stärksten Forschungs-Laser derzeit bringen.

Prof. Roland Sauerbrey und sein Team stoßen damit das Tor in neue physikalische Dimensionen auf: Sie wollen chemische Elemente umwandeln und somit quasi alte Alchimistenträume wirklich machen, astrophysikalische Ereignisse, etwa die Implosion von Gestirnen, im Labor en miniature nachbilden oder in der relativistischen Plasmaphysik aus Licht buchstäblich Materie erzeugen.

Die Jenaer Wissenschaftler haben gemeinsam mit ihren Partnern aus der traditionellen Optik-Region Jena zwei der drei technologischen Grundsatzprobleme für den neuen Laser schon gelöst - und damit bereits eine ganze Serie von so genannten spin-off-Effekten, also unmittelbar praktisch umsetzbaren Erkenntnissen, erzielt. "Thüringer Firmen in der Optik-Industrie sichern sich damit einen spezifischen Vorsprung vor der internationalen Konkurrenz", weiß Sauerbrey. Das Erfurter Wissenschaftsministerium fördert - nicht zuletzt aus diesem Grund - das Jenaer Projekt mit einer millionenschweren Basisfinanzierung.

Klein, kompakt und - mit einem Quantenwirkungsgrad von 90 Prozent - äußerst effizient wird das neue Gerät die bisherigen Generationen von Lasern alt aussehen lassen. "Wir haben uns von Anfang an von der üblicherweise sehr aufwändigen Blitzlampentechnik verabschiedet und deshalb unseren Laser auf der Basis optimierter Pumpdioden konstruiert", verrät Sauerbrey das Geheimnis der Verstärkereinheit, also des Herzstücks, für den Petawatt-Laser.

Im Endausbau werden darin 4.500 Laserdioden parallel eingesetzt. Sie stellen binnen zweier Millisekunden einen Energievorrat bereit, den dann ein speziell präparierter Laserimpuls regelrecht "abräumt" - und somit monströse Potenzen erreicht. Jede einzelne dieser Dioden liefert etwa 400 Millijoule Energie, also nahezu 100.000 Mal mehr als Dioden wie in handelsüblichen CD-Spielern. Die Jenoptik AG hat diese weltweit stärksten Laserdioden für Sauerbreys Projekt konstruiert und fertigt sie inzwischen in Serie für den Weltmarkt.

Wie bisherige Laser auch, "lebt" der neue Petawatt-Laser von der Qualität seiner optischen Bauteile. Nun haben Chemiker um Dr. Doris Ehrt im Otto-Schott-Institut der Uni Jena Spezialgläser aus Ytterbium-Ionen-dotiertem Fluorid-Phosphat entwickelt, die extrem hohe Energiemengen speichern können. "Wir haben bereits die im Endausbau erforderlichen Gläser mit 70 mm Durchmesser, die die erforderliche Pumpenergie von einem Kilojoule speichern können", rechnet Sauerbrey vor. Auch hier steht eine Serienfertigung - nicht nur für Hochleistungslaser - in Aussicht, vielleicht sogar in einer neuen Firma.

Sauerbreys Mitarbeiter, Dr. Joachim Hein und Dr. Thomas Töpfer, haben bereits ein eigenes Unternehmen gegründet, um das gewonnene Know-how zu vermarkten. Diodentechnologie und Lasergläser werden demnächst auf der weltweit bedeutendsten Fachmesse in München erstmals vorgestellt. Auch andere Thüringer Mittelständler wie die Hellma-Optik Jena oder die Mellinger Layertec GmbH profitieren von dem Know-how-Transfer aus dem Großprojekt.

Eine besonders harte Nuss haben die Jenaer Wissenschaftler allerdings noch zu knacken: Herkömmliche Beschichtungen für optische Oberflächen halten die gewaltigen Energiedichten nicht aus. "Wir brauchen dafür neue, hochreine Materialien mit extrem hoher Oberflächenqualität", schildert Sauerbrey. Spätestens in vier Jahren wollen er und seine Mitstreiter aber soweit sein. "Als wir 1998 mit dem Projekt begonnen haben, hielten viele Experten es für technologisch vollkommen utopisch und nicht finanzierbar", erinnert er sich. Nun scheint der Durchbruch zum Greifen nahe.

Wenn die Entwicklungssprünge in der Lasertechnologie ihr Tempo beibehalten, rechnet der Jenaer Physiker in etwa zehn Jahren mit einer Serienfertigung des Super-Lasers für industrielle Zwecke. Feldstärken von bis zu 10 hoch 23 Watt/cm2, Drücke bis zu einigen Terabar und eine Materiebeschleunigung bis zu 10 hoch 22 g werden dann erreichbar sein.

Das mögliche Anwendungsspektrum klingt heute noch wie Science fiction: Per Kerntransmutation bei chemischen Elementen, also durch Eingriffe in die atomare Teilchenstruktur, ließen sich neue Radioisotope für die medizinische Strahlendiagnostik und -therapie erzeugen, hochgefährliche Giftstoffe wie Atommüll könnte man buchstäblich "verbrennen". Zukunftsmusik, vorerst.

Wenn sie erst Realität geworden sein wird, möchten Roland Sauerbrey und sein Wissenschaftler-Team aber schon weiter sein. "Jetzt sprengen wir erst einmal die Petawatt-Grenze", so der Jenaer Physiker. "Mit diesem neuen technologischen Ansatz erscheinen uns aber Leistungsdichten bis zu 100 Petawatt durchaus als realistisches Ziel."

Ansprechpartner:
Prof. Dr. Roland Sauerbrey
Institut für Optik und Quantenelektronik der Friedrich-Schiller-Universität
Tel.: 03641/947200, Fax: 947202
E-Mail: sauerbrey@ioq.uni-jena.de

Dr. Wolfgang Hirsch
Referat Öffentlichkeitsarbeit
Fürstengraben 1
D-07743 Jena
Telefon: 03641 · 931030
Telefax: 03641 · 931032
E-Mail: roe@uni-jena.de

Dr. Wolfgang Hirsch | idw

Weitere Berichte zu: Endausbau Laser Physik Sauerbrey Super-Laser

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Innovation macht 3D-Drucker für kleinere und mittlere Unternehmen rentabel
24.03.2017 | Technische Hochschule Nürnberg Georg Simon Ohm

nachricht Neues energieeffizientes Verfahren zur Herstellung von Kohlenstofffasern
13.03.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise