Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biosensor für hochgiftiges Zyanid entwickelt

06.04.2004


Die Lösung, die auf ihren Zyanidgehalt hin untersucht werden soll, wird in den Biosensor gespritzt. Selbst kleinste Mengen hochgiftiges Zyanid können so nachgewiesen werden.


Bei einem Kind kann bereits der Verzehr von fünf bis zehn Bittermandeln zum Tod führen. Verantwortlich dafür sind Zyanid-Verbindungen, die im Körper in hochgiftige Blausäure umgesetzt werden. Auch Nutzpflanzen wie Aprikosen oder Bohnen enthalten Zyanide. In der Industrie werden Zyanide bei der Stahlhärtung und beim Korrosionsschutz eingesetzt. Wie gefährlich der Stoff sein kann, zeigte sich 2000 in Rumänien: Zyanidlauge, die zur Goldgewinnung genutzt wurde, gelangte in die Theiß und tötete auf 300 Kilometern Flusslauf alles Leben. Jetzt gibt es ein "Frühwarnsystem" für Zyanid. Jülicher und Marburger Wissenschaftler haben einen Biosensor entwickelt, der Zyanid weit unterhalb der Giftigkeitsschwelle schnell und präzise nachweist. Der Biosensor könnte kostengünstig in der Umwelt- und Lebensmittelkontrolle eingesetzt werden. Um den vorhandenen Prototyp zur Marktreife zu bringen, suchen die Wissenschaftler noch einen Partner aus der Industrie.


Biosensoren sind Messfühler, die eine biologische Komponente - etwa Enzyme oder ganze Zellen - einsetzen, um bestimmte Moleküle oder Substanzen zu erkennen und ihre Menge zu bestimmen. Sie nutzen dabei das Schlüssel-Schloss-Prinzip der Natur, nach dem es für die chemische Umwandlung eines Stoffes immer auch ein "passendes" Enzym gibt. So baut das Enzym "Cyanidase" Zyanid ab. Die Arbeitsgruppe um Prof. Michael Schöning vom Forschungszentrum Jülich und der Fachhochschule Aachen (Abteilung Jülich) und das Team von Prof. Michael Keusgen von der Universität Marburg haben dieses Enzym mit einem speziellen Halbleiterchip verbunden. Sie erhielten damit für das Zyanid, das von der Cyanidase zerlegt wurde, ein messbares elektrisches Signal und damit einen Nachweis selbst für kleinste Mengen Zyanid.

"Die Halbleiterchips stehen in direktem Kontakt mit der Lösung, die auf ihren Zyanidgehalt hin untersucht werden soll", erklärt Michael Schöning. "Die Cyanidase zerlegt das Zyanid in Ameisensäure und Ammoniak. Dadurch ändert sich der pH-Wert der Lösung. Diese Veränderung wird vom Halbleiterchip als elektrische Kapazitätsänderung registriert. Das Schlüssel-Schloss-Prinzip der Cyanidase stellt dabei sicher, dass die registrierten Substanzen wirklich aus Zyanid entstanden sind und nicht aus irgendeiner anderen Quelle stammen."


Bei dem gemeinsamen Projekt sind die Jülicher Forscher für die Fertigung der Halbleiterchips mit einer speziellen "EIS-Schichtstruktur" zuständig. EIS steht für Elektrolyt, Isolator und Silizium. Die Marburger Wissenschaftler kümmern sich um die Cyanidase. "Der Beitrag meiner Gruppe ist die Entwicklung, Charakterisierung und Herstellung von geeigneter Cyanidase sowie die Entwicklung von Verfahren, um das Enzym mit dem EIS-Element zu kombinieren", erläutert Michael Keusgen.

Als Wirtsorganismus für die "Produktion" der Cyanidase diente den Forschern das Darmbakterium Escherichia coli. "Dieses Bakterium wird zur Herstellung ganz unterschiedlicher Proteine verwendet. Bekanntestes Beispiel ist die Herstellung von Human-Insulin. Ganz ähnlich werden in der Biotechnologie Enzyme hergestellt", sagt Michael Keusgen. Die genetische Information zur Herstellung der Cyanidase stammt aber ursprünglich von Pseudomonas-Bakterien, die typischerweise im Boden vorkommen. Da sie dort mit allen möglichen Nahrungsquellen zurechtkommen müssen, haben diese Bakterien im Laufe der Evolution die Fähigkeit entwickelt, Zyanid als Energiequelle zu nutzen.

Für einen erwachsenen Menschen ist die Aufnahme von etwa 50 Milligramm Zyanid tödlich. Der von Schöning und Keusgen entwickelte Biosensor spricht bereits auf den Millionstel Teil dieser Menge an. Ein weiterer Vorteil des Sensors ist, dass er keine aufwändige Vorbereitung der zu untersuchenden Proben verlangt. Nach ähnlichem Prinzip haben die beiden Gruppen bereits Penicillin- und Knoblauchsensoren entwickelt.

Peter Schäfer | idw
Weitere Informationen:
http://www.fz-juelich.de

Weitere Berichte zu: Biosensor Cyanidase Enzym Halbleiterchip Zyanid

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Forschungsprojekt zu optimierten Oberflächen von Metallpulver-Spritzguss-Werkzeugen
17.08.2017 | Hochschule Pforzheim

nachricht Umweltfreundliche Alternative zum verbotenen Hartverchromen mit Chrom(VI)
10.08.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten