Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltraum-Mission Ariane

14.01.2003


Mit Kasseler Sensor am Kometen-Staub

... mehr zu:
»IMA »Komet »Sensor »Weltraum »Weltraum-Mission

Wenn in den nächsten Tagen die Ariane-5-Rakete der European Space Agency (ESA) vom Weltraumhafen Kourou in Französisch Guyana abhebt, wird auch Hochtechnologie aus Kassel mit an Bord sein. Ein winziger Sensor, entwickelt von Physikern des Instituts für Mikrostrukturanalyse und Analytik (IMA) an der Universität Kassel unter Leitung von Prof. Dr. Rainer Kassing, soll dabei helfen, die Geheimnisse der ältesten Objekte in unserem Universum zu lüften ? der Kometen.

Der Kasseler Sensor ist eines von 26 Messinstrumenten an Bord des Kometenjägers Rosetta, den die Ariane-Rakete in den Weltraum befördern wird. Das Ziel seiner achtjährigen Reise durch das All ist der Komet 46P/Wirtanen. Dort soll Rosetta auf ihrem Weg durch den Schweif des kosmischen Eisbergs winzige Staubkörner einfangen. Das Kasseler Messgerät im Nano-Maßstab wird die Oberflächen dieser Partikel dann auf ihre magnetischen und elektrischen Eigenschaften hin untersuchen und ihre Zusammensetzung bestimmen. Außerdem ist der Sensor in der Lage, die Staubpartikel dreidimensional darzustellen. Mit diesen Abbildungen liefert er das Material für weitere ausführliche wissenschaftliche Analysen. Von den Ergebnissen der Untersuchungen erhoffen sich die ESA-Wissenschaftler neue Erkenntnisse darüber, ob zumindest ein Teil der Bausteine irdischen Lebens aus dem All stammt.


In einem Zeitraum von nur vier Jahren haben die Kasseler Physiker den Sensor entwickelt. Ihre Aufgabe war es, Messtechnik, die sich schon im Einsatz auf der Erde bewährt hat, weltraumtauglich zu machen. Auf seiner Langzeitmission im Weltall, unter dem Einfluss extremer Arbeitstemperaturen, der Beschleunigung an Bord der Raumfähre und der Strahlung im All soll der Sensor ebenso verlässliche Daten liefern wie auf der Erde. So wurde an der Universität Kassel eine völlig neue Sensorenreihe für den Einsatz im Weltraum entwickelt.

Noch in der Entwicklungsphase dieser Sensortechnik haben sich die Physiker Dr. Tomasz Debski und Wolfgang Barth, die zu der Zeit als Doktoranden an diesem Thema forschten, in die Selbstständigkeit gewagt. Mit ihrer Firma Nascatec GmbH arbeiten sie eng mit dem IMA der Universität Kassel zusammen und beliefern mit ihrer Technik nun auch die Europäische Weltraumagentur.

Weitere Informationen:

Universität Kassel - Fachbereich Physik -
Prof. Dr. Rainer Kassing
Heinrich-Plett-Str. 40
34132 Kassel
Telefon: (0561) 804 4586
Telefax: (0561) 804 4136
E-Mail: kassing@physik.uni-kassel.de

oder

Nascatec GmbH
Wolfgang Barth
Dr. Tomasz Debski
Ludwig-Erhard-Str. 10
34131 Kassel
Telefon:(0561) 920 88 300
Telefax:(0561) 920 88 309
E-Mail: info@nascatec.com


Prof. Dr. Rainer Kassing | Universität Kassel

Weitere Berichte zu: IMA Komet Sensor Weltraum Weltraum-Mission

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Granulare Materie blitzschnell im Bild
21.09.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Sprühtrocknung: Wirkstoffe passgenau verkapseln
01.09.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie