Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf der Suche nach dem perfekten Laserstrahl

13.05.2015

Im Bereich Laserschneiden konzentrieren sich aktuelle FuE-Aktivitäten auf die Erweiterung des Know-hows zur Formung fasergeführter Laserstrahlung für das Blechschneiden und zu dessen Übertragung auf das schädigungsfreie Schneiden von Glas für die Displayindustrie.

Wissenschaftler am Fraunhofer-Institut für Lasertechnik ILT arbeiten im Rahmen des EU-Projekts »High Power Adaptable Laser Beams for Materials Processing HALO« daran, die Intensität der Laserstrahlung so zu verteilen, dass höchste Qualitätsanforderungen unter Schonung von Ressourcen erreicht werden. Ergebnisse werden auf der LASER World of Photonics 2015 in München vorgestellt.


Diagnose des Schneidprozesses mit High-Speed-Videografie.

Fraunhofer ILT, Aachen


Simulierte Filamente und Abtrag unter Variation der Fokuslage (Ausschnitt: vergrößerte Abtragkontur).

Fraunhofer IL, Aachen

Der weltweit größte Verkaufsumsatz von industriellen Laserstrahlquellen wird heute mit Lasern für Schneidanwendungen erzielt. Aktuelle Marktanalysen kommen auf einen Anteil von ca. 50 Prozent, wobei hier das präzise, flexible und hochproduktive 2D-Schneiden nahezu beliebiger Konturen aus Blechplatinen die dominierende Anwendung darstellt.

Aber auch vollkommen neue Schneidverfahren beispielsweise für das Einbringen von Löchern und die präzise Konturierung von Glasdisplays für Mobilgeräte befinden sich kurz vor dem Eintritt in die industrielle Fertigung.

Im Bereich des Schneidens von Blech ist der Laser ein etabliertes Werkzeug. Laserleistungen bis 8 kW sind heute industrieller Stand der Technik und gestatten sogar das Schneiden von Dickblech bis 50 mm. Neben den zweidimensionalen Anwendungen hat sich gerade in den letzten Jahren auch die dreidimensionale Bearbeitung geformter Bauteile nicht zuletzt wegen des umfangreichen Einsatzes hochfester, pressgehärteter und damit mechanisch schwer bearbeitbarer Stähle insbesondere im automobilen Karosseriebau auf breiter Front durchgesetzt.

Die Eignung des Lasers als Werkzeug zum Schneiden weiterer Materialien - von Halbleitern über Glas, bis hin zu Kunststoffen und Verbundwerkstoffen - ist demonstriert und in ersten Anwendungen eingeführt. Beim Laserschneiden entsteht zwar kein Werkzeugverschleiß, der bei konventionellen Verfahren zur Qualitätsminderung führen kann, jedoch weisen die Schnittkanten von laserbearbeiteten Bauteilen bislang noch eine höhere Rauheit auf als dies beispielsweise bei gefrästen Metallbauteilen erreichbar ist. Dies liegt unter anderem daran, dass die Laserstrahlung oftmals nicht die geeignete Form aufweist, die für die betreffende Anwendung das beste Bearbeitungsergebnis ermöglicht.

Optimierungspotenzial beim Laserschneiden

Ein typischer Laserstrahl besitzt in seinem Zentrum eine sehr große Intensität, die zu den Seiten glockenförmig abfällt. Ein Laserstrahl mit einer solchen Gaußschen Intensitätsverteilung stellt nicht für jede Anwendung das optimale Werkzeug dar. Beispielsweise lässt sich ein Blech von 1 mm Dicke schnell und qualitativ hochwertig mit dieser Strahlverteilung schneiden, ein 1 cm dickes Blech erfordert jedoch eine ausgedehntere und an den Rändern höhere Intensitätsverteilung. Jüngste Forschungsaktivitäten gehen nun dahin, den passenden Laserstrahl für das Schneiden verschiedener Materialarten und -dicken zu definieren und die dementsprechenden Potenziale zu erschließen.

Bessere Schnittqualität, höhere Bearbeitungsgeschwindigkeit und Wirtschaftlichkeit

Hier setzt das EU-Projekt »High Power Adaptable Laser Beams for Materials Processing HALO« an: Ein internationales Konsortium aus neun Forschungseinrichtungen und Industrieunternehmen, darunter Trumpf und Synova, arbeitet gemeinsam unter der Leitung der Gooch & Hausego Ltd seit September 2012 an dem Ziel, anwendungsspezifische Strahlformungen zu entwickeln. Die Intensitätsverteilung des Laserstrahls soll für den jeweiligen Anwendungsfall maßgeschneidert werden. Schließlich sollen in einem weiteren Schritt Laseranlagen so ausgerüstet werden, dass Anwender in die Erprobung gehen können. Die Experten des Fraunhofer ILT sehen darin ein enormes Potenzial in puncto Kostensenkung und Bearbeitungsgeschwindigkeit bei gleichzeitiger Verbesserung der Produktqualität.

Adaptive Strahlform

Seit über 25 Jahren befassen sich die Gruppen Makrofügen und Schneiden sowie Modellierung und Simulation am Fraunhofer ILT mit dem Laserstrahlschneiden. Die Forscher wenden ausgefeilte Diagnoseverfahren (Hochgeschwindigkeits-Videografie des Schneidprozesses, Streak-Techniken zur Schmelzströmungsanalyse, Schlieren-Diagnose zur Visualisierung der Schneidgasströmung), und Auswertemethoden (Meta-Modellierung, QuCut-Simulation der Riefenbildung) an, schreiten im Verständnis kontinuierlich fort und setzen geeignete Laserverfahren für die unterschiedlichsten Schneidaufgaben um. Im Rahmen des Projekts HALO wird nun an ausgewählten Anwendungsbeispielen untersucht, wie der Laserstrahl für ein optimales Schneidergebnis beschaffen sein muss. Relevant ist die Beobachtung der Schneiddynamik und der Bildung von Bart und Riefen.

Durch Simulation zum perfekten Laserstrahl

Einen großen Beitrag hierzu leistet die Gruppe Modellierung und Simulation am Fraunhofer ILT, die sich der Optimierung von Laserprozessen mit Hilfe der Erkenntnisse von Computersimulationen widmet. Die Schneidprozesse werden zunächst im Computer simuliert. Anschließend wird errechnet, wie die Intensität des optimalen Laserstrahls für die jeweilige Anwendung verteilt sein muss. Anhand dieser Erkenntnisse werden anschließend die optischen Komponenten ausgelegt.

Im Rahmen des »European Research on Laser Based Technologies« auf der LASER World of Photonics 2015 werden die Ergebnisse des Projekts HALO erstmals der Öffentlichkeit vorgestellt:

Prof. Wolfgang Schulz, Nichtlineare Dynamik der Laser-Fertigungsverfahren NLD der RWTH Aachen University
»HALO – Real Time Adjustment of Laserbeam Properties for Optimum Process Results«
Halle A2, Stand 250
25. Juni 2015, von 13:00 bis 13:20 Uhr

Auf dem Fraunhofer-Gemeinschaftsstand A3.121 der LASER World of Photonics (München, 22.-25. Juni 2015) zeigen Experten des Fraunhofer ILT Laserstrahlschneidprozesse für verschiedene Materialien im Makro- und Mikro-Bereich sowie Simulationen dieser Prozesse.

Ansprechpartner

Prof. Wolfgang Schulz
Nichtlineare Dynamik der Laser-Fertigungsverfahren NLD,
RWTH Aachen University
Telefon +49 241 8906-204
wolfgang.schulz@ilt.fraunhofer.de

Dr. Dirk Petring
Leiter der Gruppe Makrofügen und Schneiden
Telefon +49 241 8906-210
dirk.petring@ilt.fraunhofer.de

Fraunhofer-Institut für Lasertechnik ILT
Ste4inbachstraße 15
52074 Aachen

Weitere Informationen:

http://www.ilt.fraunhofer
http://www.world-of-photonics.com/rahmenprogramm.html

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Projekt CeGlaFlex: Hauchdünne, bruchsichere und biegsame Keramik und Gläser
24.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Löschbare Tinte für den 3-D-Druck
24.04.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung