Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Katalysatoren sind Top-Thema beim Lindauer Treffen der Chemienobelpreisträger mit Spitzentalenten aus 66 Ländern

19.06.2009
Allein seit 2001 wurden drei Nobelpreise für Fortschritte in der Katalyseforschung verliehen.

Vier der dafür geehrten Laureaten - Ryoji Noyori, Robert Grubbs, Richard Schrock und Gerhard Ertl - werden vom 28.6. bis 3.7. nach Lindau kommen, um dort mit 600 Nachwuchsforschern aus 66 Ländern Perspektiven ihres Fachgebietes zu erörtern. Ferner wird eine Podiumsdiskussion über die Rolle der Chemie bei der Entwicklung erneuerbarer Energien in Lindau stattfinden (30. Juni ab 11.15 Uhr).

Katalyse ist die Kunst, träge Substanzen so schnell und effektiv miteinander reagieren zu lassen, dass dabei kostengünstig und umweltschonend die gewünschten Produkte entstehen. Sie gilt auch als eine Schlüsseltechnologie für die Entwicklung einer von fossilen Brennstoffen unabhängigen Energieversorgung. Einhundert Jahre nachdem der deutsche Chemiker Wilhelm Ostwald für die wissenschaftliche Begründung der Katalyse 1909 mit dem Nobelpreis ausgezeichnet wurde, ist diese Disziplin der Chemie deshalb aktueller denn je. Allein seit 2001 wurden drei Nobelpreise für Fortschritte in der Katalyseforschung verliehen. Vier der dafür geehrten Laureaten - Ryoji Noyori, Robert Grubbs, Richard Schrock und Gerhard Ertl - werden Ende des Monats nach Lindau kommen, um dort mit 600 Nachwuchsforschern aus 66 Ländern Perspektiven ihres Fachgebietes zu erörtern. Ferner wird eine Podiumsdiskussion über die Rolle der Chemie bei der Entwicklung erneuerbarer Energien in Lindau stattfinden.

Über 80 Prozent aller chemischen Produkte - von Kunststoffen zu Kosmetika, von Textilien zu Medikamenten - werden heute mit Hilfe von Katalysatoren hergestellt. Spontan würden die meisten chemischen Reaktionen nämlich viel zu langsam ablaufen. Denn bei einer chemischen Reaktion müssen zunächst bestehende Bindungen zwischen bestimmten Atomen gelöst werden. Dazu brauchen die Reaktionspartner Energie. Wie ein Berg baut sich diese sogenannte Aktivierungsenergie vor den Reaktionspartnern auf und hindert sie daran, schnell miteinander in Kontakt zu treten. Katalysatoren können die Höhe dieses Berges drastisch senken. In ihrem Zentrum steht häufig ein Metall, das sich den Reaktionspartnern zur Bildung von Zwischenprodukten anbietet, für die weniger Energie benötigt wird. Damit bahnen Katalysatoren gleichsam eine gangbaren Pass über einen Energieberg, dessen Gipfel für die Reaktionspartner viel zu hoch wäre. Reaktionen, die sonst, wenn überhaupt, erst nach Monaten möglich gewesen wären, lassen sich so innerhalb von Minuten verwirklichen. Die Katalysatoren selbst gehen aus der Reaktion unverändert hervor, wie Wilhelm Ostwald erstmals formulierte: "Ein Katalysator ist ein Stoff, der die Geschwindigkeit einer chemischen Reaktion erhöht, ohne selbst dabei verbraucht zu werden."

Im selben Jahr, in dem Ostwald den Nobelpreis erhielt, hatte seine Grundlagenforschung bereits die Entwicklung eines katalytischen Verfahrens angestoßen, das es ermöglichte, Stickstoff aus der Luft "einzufangen" und mit Wasserstoff zu Ammoniak zu verbinden. Fritz Haber (Nobelpreis 1918) und Carl Bosch (Nobelpreis 1931) erleichterten mit diesem nach ihnen benannten Haber-Bosch-Verfahren zwar auch die Herstellung von Sprengstoff, lösten damit aber andererseits eines der dringendsten Menschheitsprobleme der damaligen Zeit, nämlich die Ernährung der schnell wachsenden Weltbevölkerung nachhaltig sicherzustellen. Die natürlichen Stickstoffquellen (Salpeter) für Düngemittel begannen Anfang des 20. Jahrhunderts zu versiegen. Namhafte Wissenschaftler warnten vor einer globalen Hungerkatastrophe. In dieser Situation wurde chemisch mit Hilfe der Katalyse produziertes Ammoniak zur ersehnten Grundlage künstlich hergestellten Düngers. Würden heutzutage weltweit nicht mehr als 100 Millionen Tonnen Kunstdünger jährlich im Haber-Bosch-Verfahren hergestellt, dann hätte die Hälfte der Menschheit nichts zu essen.

Gerhard Ertl, Chemie-Nobelpreisträger des Jahres 2007, hat die einzelnen Schritte der Synthese von Ammoniak im Haber-Bosch-Verfahren im atomaren Detail aufgeklärt. Damit trug er nicht nur zur Optimierung des Verfahrens bei, sondern begründete auch die moderne Oberflächenchemie. Der Katalysator ist in diesem Verfahren nämlich die Oberfläche eines Festkörpers, dünn aufgetragenes Eisen, auf das die beiden gasförmigen Reaktionspartner treffen. Weil die Atome der Oberflächenschicht viel weniger Nachbarn haben als diejenigen im unter Druck und Hitze stehenden Gas, neigen sie dazu, mit diesen Übergangsverbindungen einzugehen und so die Herstellung des Endprodukts zu katalysieren. Diese hohe chemische Aktivität von Oberflächen macht sie für Verunreinigungen empfänglich: Nur unter streng kontrollierten Vakuumbedingungen und mit äußerster Phantasie und Präzision ist es möglich, spezifische Reaktionen zu untersuchen. Besonders intensiv hat sich Ertl auch mit der Entgiftung von Kohlenmonoxid zu Kohlendioxid in den platinbeschichteten Abgaskatalysatoren von Kraftfahrzeugen beschäftigt. Dabei enthüllte er, wie eine eigentlich einfache Reaktion erstaunliche Grade von Komplexität erreicht. Unter bestimmten Bedingungen kann die Bildung solcher Muster als allgemeines Gestaltungsprinzip natürlicher Vorgänge angesehen werden. Darüber wird Gerhard Ertl in seinem Vortrag "Von Atomen zur Komplexität - Reaktionen an Oberflächen" berichten, mit dem er am 29. Juni das wissenschaftliche Programm der Tagung eröffnet.

Ein großer Hoffnungsträger ist die Katalyse, wenn es um die Vision einer wasserstoffgetriebenen Energieerzeugung geht. Ihr Prinzip ist bestechend: Wasser wird durch Photokatalyse in seine Bestandteile Wasserstoff und Sauerstoff zerlegt. Der Wasserstoff dient anschließend als Energiespeicher und kann zum Beispiel in entsprechenden Brennstoffzellen jederzeit wieder mit Sauerstoff unter Gewinnung elektrischer Energie zu Wasser verbunden werden. Dass dieser Zirkel derzeit Zukunftsmusik ist, liegt vor allem daran, dass die lichtinduzierte katalytische Spaltung von Wasser trotz intensiver Forschung den Chemikern noch große Schwierigkeiten bereitet. Grundsätzlich sollte sie sich aber realisieren lassen, etwa durch Katalysatoren, die der Natur abgeschaut sind. Denn dort sind Katalysatoren - besser bekannt unter ihrem biologischen Namen Enzyme - die uralten Spielmacher des Lebens. Von der Evolution über Jahrmillionen entwickelt, bieten sie den Chemikern unübertroffene Vorbilder an. Dazu gehören sowohl das wasserspaltende Enzymsystem der pflanzlichen Photosynthese als auch die Hydrogenasen, die in Bakterien vorkommen und in der Natur Wasserstoff produzieren oder verbrauchen. Weltweit werden diese Enzyme heute intensiv erforscht. Eines Tages könnten sie die Vision einer regenerativen und umweltfreundlichen Wasserstoffwirtschaft zur Energieversorgung unserer Erde Wirklichkeit werden lassen.

Dass solche Visionen seit jeher die Basis unseres eigenen Lebens sind, wird John Walker, Nobelpreisträger des Jahres 1997, beim Lindauer Treffen in seinem Vortrag über "Biologische Energieumwandlung" schildern. Durch gesteuerte Verbrennung unserer Nahrung in den Zellen unseres Körpers zu Wasser und Kohlendioxid durch die Atmung wird Energie erzeugt und chemisch gespeichert. Der Energiespeicher ist ein Molekül mit der Abkürzung ATP. Jeder Mensch produziert und verbraucht täglich etwa so viel ATP, wie seinem Körpergewicht entspricht. Für die Herstellung dieser Energie am Ende der sogenannten Atmungskette sind die Mitochondrien verantwortlich - die Kraftwerke der Zellen. In ihrer inneren Membran rotieren Enzyme, die ATP-Synthasen, die durch Wasserstoffionen angetrieben werden. Struktur und Wirkungsmechanismus der ATP-Synthasen sind von John Walker entschlüsselt worden. Mit einem Durchmesser von zehn Millionstel Millimeter ist die ATP-Synthase der kleinste natürliche Motor der Welt. Sein Wirkungsgrad beträgt fast 100 Prozent - ein erstklassiges Modell für eine nachhaltige Energiewirtschaft.

Weitere Informationen:
http://www.lindau-nobel.de/2009_Meeting_Chemistry.AxCMS?ActiveID=1338 - Informationen zur Tagung (Abstracts, Programm, Teilnehmer)
http://www.lindau-nobel.de - Live-Webstreams der Vorträge und Podiumsdiskussionen
http://www.scienceblogs.de/lindaunobel - der offizielle Tagungsblog
http://www.twitter.com/lindaunobel - Informationen zur Tagung/live von der Tagung

Christian Rapp | idw
Weitere Informationen:
http://www.lindau-nobel.de

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung
27.06.2017 | Fraunhofer IISB

nachricht Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle
27.06.2017 | Fraunhofer-Institut für Kommunikation, Informationsverarbeitung und Ergonomie FKIE

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie