Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zerlegte Zahlen

12.11.2007
Forscher des SFB 478 veranschaulichen mathematische Probleme durch die Geometrie

"Einen direkten Praxisbezug können Sie von uns nicht erwarten", lacht Prof. Dr. Peter Schneider vom Sonderforschungsbereich (SFB) 478 "Geometrische Strukturen in der Mathematik" der WWU Münster: Die Wissenschaftler des SFB, der von der Deutschen Forschungsgemeinschaft gefördert wird, arbeiten auf dem Gebiet der theoretischen Mathematik.

"Dabei ist das Rechnen nicht zentral. Es geht darum, Strukturen zu verstehen und zu klassifizieren", so Prof. Schneider. Die Forscher wenden geometrische Methoden an, um abstrakte mathematische Probleme zu veranschaulichen, zum Beispiel durch die räumliche Vorstellung von Gleichungen.

Vier Projektbereiche des SFB arbeiten an der Lösung ganz unterschiedlicher Probleme. Dabei setzen sie aber ähnliche Methoden ein, bei denen die Geometrie eine zentrale Rolle spielt. Im Projektbereich "Topologie und Differentialgeometrie" beschreiben Wissenschaftler geometrische Strukturen mit Hilfe der Algebra. Im Vordergrund stehen gekrümmte Figuren im Raum - das könnte zum Beispiel eine Kugel sein oder ein komplexeres Gebilde wie ein Pferdesattel. "Wir wollen die räumlichen Strukturen abhängig von deren Eigenschaften mathematisch klassifizieren", so Prof. Schneider.

... mehr zu:
»Geometrie

In den anderen Projektbereichen dient die Geometrie der Veranschaulichung mathematischer Probleme. In der "arithmetischen Geometrie" stehen algebraische Fragestellungen im Fordergrund: die Untersuchung von Gleichungen mit ganzen Zahlen, die nach den geläufigen mathematischen Regeln addiert und multipliziert werden können. Allerdings rechnen die Mathematiker kaum mit konkreten Zahlen, vielmehr geht es darum, universelle Lösungen zu finden. Die geometrischen Strukturen veranschaulichen die möglichen Lösungen, die für eine Gleichung in Frage kommen, und helfen so, sie zu verstehen. In der "nichtkommutativen Geometrie" geht es im Gegensatz zu der arithmetischen darum, eine Mathematik zu beschreiben, für die geläufige Rechenregeln - zum Beispiel, dass es nicht darauf ankommt, in welcher Reihenfolge bestimmte Rechenschritte stattfinden - nicht gelten. Das ist in der Quantenphysik der Fall, für deren Beschreibung die klassische Physik und Mathematik nicht ausreichen.

Die "rigide Geometrie" misst die Größe von Zahlen auf ganz andere Weise, als wir es gewohnt sind. "Für den Laien ist das merkwürdig", schmunzelt Prof. Schneider. Dieser Zweig der Mathematik fragt danach, wie häufig eine ganze Zahl durch eine Primzahl - zum Beispiel die Drei - teilbar ist. Je höher sie durch diese Zahl teilbar ist, desto kleiner ist sie. Nach diesem System ist die Neun kleiner als die Drei. Für die Mathematiker werden komplizierte Fragestellungen dadurch einfacher: Das ursprüngliche Problem wird durch die "Zerlegung" der ganzen Zahlen in Primzahlen in viele leichter lösbare Teilprobleme aufgeteilt. Die Mathematiker sprechen dabei von "p-adischen" Zahlen. Das bekannteste Beispiel für solch ein System ist das Zweiersystem, das von Computern angewandt wird.

Während beim Dezimalsystem Ziffern von 0 bis 9 eingesetzt werden, verwenden Computer lediglich die 0 und die 1 - also ein "2-adisches"

System.

Zur Lösung abstrakter mathematischer Probleme werden geometrische Gebilde eingesetzt, die Nicht-Mathematikern begrifflich vertraut
vorkommen: so genannte Gebäude, die die Wechselwirkungen innerhalb einer Klasse mathematischer Strukturen geometrisch veranschaulichen.
Im einfachsten Fall sind das "Bäume", die sich im zweidimensionalen Raum verzweigen und relativ simple Rechenoperationen symbolisieren.

Werden die mathematischen Probleme komplizierter, sind auch die Gebäude komplexer. Sie bilden dann mehrdimensionale "Apartments" und "Kammern".

"Der Name ist ein bisschen verrückt, unsere Gebäude haben nichts mit Architektur zu tun", räumt Prof. Dr. Linus Kramer ein. Er

erklärt: "In der Geometrie interessiert man sich unter anderem für Symmetrien geometrischer Strukturen, wie etwa Spiegelungen oder Verschiebungen. Diese Symmetrien bilden so genannte Lie-Gruppen, benannt nach dem norwegischen Mathematiker Sophus Lie." Die elementaren Bausteine der Lie-Gruppen hat Ende des 19. Jahrhunderts der Mathematiker Wilhelm Killing entdeckt, der als Professor in Münster tätig war. Killing fand heraus, wie sich Lie-Gruppen mit Hilfe bestimmter kombinatorischer Daten klassifizieren lassen. Diese Klassifizierung lässt sich wiederum durch die Gebäude visualisieren.

Killing und Lie stehen im Dezember bei den münsterschen Mathematikern im Fokus: Auf der Tagung "Wilhelm Killing, 1847-1923: Lie Theory and Geometry" werden moderne Fragestellungen der Geometrie vorgestellt, die Bezüge zu Killings Arbeit über die Lie-Gruppen haben. Es haben sich viele prominente Referenten angekündigt, darunter Prof. Dr. Friedrich Ernst Peter Hirzebruch. Die Tagung findet vom 7. bis zum 8. Dezember 2007 am Mathematischen Institut der WWU statt.

| Uni Münster
Weitere Informationen:
http://wwwmath1.uni-muenster.de/u/lkram_01/WilhelmKilling07.html

Weitere Berichte zu: Geometrie

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Von Batterieforschung bis Optoelektronik
23.06.2017 | Justus-Liebig-Universität Gießen

nachricht 10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge
22.06.2017 | Haus der Technik e.V.

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften