Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zerlegte Zahlen

12.11.2007
Forscher des SFB 478 veranschaulichen mathematische Probleme durch die Geometrie

"Einen direkten Praxisbezug können Sie von uns nicht erwarten", lacht Prof. Dr. Peter Schneider vom Sonderforschungsbereich (SFB) 478 "Geometrische Strukturen in der Mathematik" der WWU Münster: Die Wissenschaftler des SFB, der von der Deutschen Forschungsgemeinschaft gefördert wird, arbeiten auf dem Gebiet der theoretischen Mathematik.

"Dabei ist das Rechnen nicht zentral. Es geht darum, Strukturen zu verstehen und zu klassifizieren", so Prof. Schneider. Die Forscher wenden geometrische Methoden an, um abstrakte mathematische Probleme zu veranschaulichen, zum Beispiel durch die räumliche Vorstellung von Gleichungen.

Vier Projektbereiche des SFB arbeiten an der Lösung ganz unterschiedlicher Probleme. Dabei setzen sie aber ähnliche Methoden ein, bei denen die Geometrie eine zentrale Rolle spielt. Im Projektbereich "Topologie und Differentialgeometrie" beschreiben Wissenschaftler geometrische Strukturen mit Hilfe der Algebra. Im Vordergrund stehen gekrümmte Figuren im Raum - das könnte zum Beispiel eine Kugel sein oder ein komplexeres Gebilde wie ein Pferdesattel. "Wir wollen die räumlichen Strukturen abhängig von deren Eigenschaften mathematisch klassifizieren", so Prof. Schneider.

... mehr zu:
»Geometrie

In den anderen Projektbereichen dient die Geometrie der Veranschaulichung mathematischer Probleme. In der "arithmetischen Geometrie" stehen algebraische Fragestellungen im Fordergrund: die Untersuchung von Gleichungen mit ganzen Zahlen, die nach den geläufigen mathematischen Regeln addiert und multipliziert werden können. Allerdings rechnen die Mathematiker kaum mit konkreten Zahlen, vielmehr geht es darum, universelle Lösungen zu finden. Die geometrischen Strukturen veranschaulichen die möglichen Lösungen, die für eine Gleichung in Frage kommen, und helfen so, sie zu verstehen. In der "nichtkommutativen Geometrie" geht es im Gegensatz zu der arithmetischen darum, eine Mathematik zu beschreiben, für die geläufige Rechenregeln - zum Beispiel, dass es nicht darauf ankommt, in welcher Reihenfolge bestimmte Rechenschritte stattfinden - nicht gelten. Das ist in der Quantenphysik der Fall, für deren Beschreibung die klassische Physik und Mathematik nicht ausreichen.

Die "rigide Geometrie" misst die Größe von Zahlen auf ganz andere Weise, als wir es gewohnt sind. "Für den Laien ist das merkwürdig", schmunzelt Prof. Schneider. Dieser Zweig der Mathematik fragt danach, wie häufig eine ganze Zahl durch eine Primzahl - zum Beispiel die Drei - teilbar ist. Je höher sie durch diese Zahl teilbar ist, desto kleiner ist sie. Nach diesem System ist die Neun kleiner als die Drei. Für die Mathematiker werden komplizierte Fragestellungen dadurch einfacher: Das ursprüngliche Problem wird durch die "Zerlegung" der ganzen Zahlen in Primzahlen in viele leichter lösbare Teilprobleme aufgeteilt. Die Mathematiker sprechen dabei von "p-adischen" Zahlen. Das bekannteste Beispiel für solch ein System ist das Zweiersystem, das von Computern angewandt wird.

Während beim Dezimalsystem Ziffern von 0 bis 9 eingesetzt werden, verwenden Computer lediglich die 0 und die 1 - also ein "2-adisches"

System.

Zur Lösung abstrakter mathematischer Probleme werden geometrische Gebilde eingesetzt, die Nicht-Mathematikern begrifflich vertraut
vorkommen: so genannte Gebäude, die die Wechselwirkungen innerhalb einer Klasse mathematischer Strukturen geometrisch veranschaulichen.
Im einfachsten Fall sind das "Bäume", die sich im zweidimensionalen Raum verzweigen und relativ simple Rechenoperationen symbolisieren.

Werden die mathematischen Probleme komplizierter, sind auch die Gebäude komplexer. Sie bilden dann mehrdimensionale "Apartments" und "Kammern".

"Der Name ist ein bisschen verrückt, unsere Gebäude haben nichts mit Architektur zu tun", räumt Prof. Dr. Linus Kramer ein. Er

erklärt: "In der Geometrie interessiert man sich unter anderem für Symmetrien geometrischer Strukturen, wie etwa Spiegelungen oder Verschiebungen. Diese Symmetrien bilden so genannte Lie-Gruppen, benannt nach dem norwegischen Mathematiker Sophus Lie." Die elementaren Bausteine der Lie-Gruppen hat Ende des 19. Jahrhunderts der Mathematiker Wilhelm Killing entdeckt, der als Professor in Münster tätig war. Killing fand heraus, wie sich Lie-Gruppen mit Hilfe bestimmter kombinatorischer Daten klassifizieren lassen. Diese Klassifizierung lässt sich wiederum durch die Gebäude visualisieren.

Killing und Lie stehen im Dezember bei den münsterschen Mathematikern im Fokus: Auf der Tagung "Wilhelm Killing, 1847-1923: Lie Theory and Geometry" werden moderne Fragestellungen der Geometrie vorgestellt, die Bezüge zu Killings Arbeit über die Lie-Gruppen haben. Es haben sich viele prominente Referenten angekündigt, darunter Prof. Dr. Friedrich Ernst Peter Hirzebruch. Die Tagung findet vom 7. bis zum 8. Dezember 2007 am Mathematischen Institut der WWU statt.

| Uni Münster
Weitere Informationen:
http://wwwmath1.uni-muenster.de/u/lkram_01/WilhelmKilling07.html

Weitere Berichte zu: Geometrie

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen
24.03.2017 | Technische Hochschule Wildau

nachricht Lebenswichtige Lebensmittelchemie
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise