Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Deutsche Ionentriebwerke sollen ESA-Satelliten "Artemis" retten

25.02.2002


Die Entwicklung begann vor 40 Jahren im I. Physikalischen Institut der Universität Gießen - Pressegespräch und Pressepräsentation am Mittwoch, 27. Februar 2002, um 11 Uhr

Ionentriebwerke, die seit 1962 am I. Physikalischen Institut (Abteilung von Prof. Dr. Horst Löb) der Justus-Liebig-Universität Gießen entwickelt und von der Firma Astrium (früher MBB bzw. Dasa) in Ottobrunn gebaut und qualifiziert werden, sollen jetzt den 700 Millionen Euro teuren ESA-Satelliten "Artemis" in seine Sollbahn bringen. Zu einem Pressegespräch mit Pressepräsentation am Mittwoch, den 27. Februar 2002, um 11.00 Uhr im I. Physikalischen Institut der Justus-Liebig-Universität Gießen (Heinrich-Buff-Ring 16, 4. Stock, Abteilung von Prof. Dr. Karl-Heinz Schartner) laden wir Sie recht herzlich ein. Besichtigt werden können:
· der große Gießener Vakuumprüfstand
· das neue Triebwerk RIT XT der Firma Astrium im Betrieb
· Hardware-Modelle verschiedener Triebwerke, u.a. das RITA 10.

Am 12. Juli 2001 wurde in Kouru der 3,1 Tonnen schwere ESA-Satellit "Artemis" von einer Ariane 5-Rakete gestartet. Der laut ESA "most advanced telecommunication satellite yet developed by ESA" soll u.a. eine Laserverbindung zum französischen Umweltsatelliten "Spot 4" herstellen. Artemis kostete rund 700 Mio EUR und wurde nicht versichert. Durch einen Fehler in der Ariane 5-Oberstufe "strandete" Artemis in einer 31.000 km hohen Kreisbahn. Damit fehlen noch 5000 km bis zur geostationären 24-Stunden-Bahn.

Glücklicherweise befinden sich an Bord von Artemis kleine Ionentriebwerke. Sie waren ursprünglich nur zur Bahnkontrolle vorgesehen, d.h. zur Kompensation der solaren und lunaren Störkräfte. Die ESA hat nun entschieden, diese Ionentriebwerke - weltweit erstmalig - zunächst zum Anheben des Satelliten in die Sollbahn zu benutzen. Dies erfolgt auf einer Spiralbahn, die sich täglich um ca. 25 km aufweitet, so dass das gesamte Manöver rund 200 Tage beanspruchen wird.

Der große Vorteil der Ionentriebwerke: Ihre im Vergleich zu chemischen Aggregaten mehr als zehnmal höheren Strahlgeschwindigkeiten führen zu einer entsprechenden Treibstoffersparnis. Mit weniger als 20 kg Xenon-Treibstoff kann der tonnenschwere Satellit 5000 km angehoben werden. Die eigentliche Schubphase begann am 19. Februar 2002 mit dem Einschalten zweier deutscher "RITA-Ionentriebwerke". Die Radiofrequenz-Ionentriebwerke der Typenreihe RIT wurden seit 1962 am I. Physikalischen Institut der Justus-Liebig-Universität Gießen in der Abteilung von Prof. Dr. Horst Löb konzipiert, optimiert und zum Labor-Prototypen entwickelt. Der Treibstoff Xenon wird in ihnen durch eine elektrodenlose Hochfrequenz-Entladung ionisiert - so dass Elektrodenprobleme wie bei den konkurrierenden "Kaufman-Triebwerken" gar nicht auftreten können - und dann durch drei vielfach gelochte Hochspannungselektroden auf 35 km/s beschleunigt. Seit 1970 befasst sich die Firma Astrium (früher MBB bzw. Dasa) in Ottobrunn mit der Industrialisierung der RIT-Aggregate. Sie baut die kompletten Flugeinheiten und qualifiziert sie. Die Funktionstests werden im großen Gießener Hochvakuum-Prüfstand (er simuliert 30 m3 "Weltraum") durchgeführt, wobei sich die Kooperation zwischen Universität und Industrie hervorragend bewährt.

Im Jahr 1992 wurde ein Astrium-Triebwerk "RITA 10", wie es jetzt auf Artemis zum Einsatz kommt, an Bord des Satelliten EURECA weltraumgetestet. Zur Zeit wird ein weiteres Aggregat der Firma in einem Prüfstand des Europäischen Technologiezentrums ESTEC in Noordwijk (NL) auf seine Lebensdauer getestet. Es läuft bereits problemlos seit 17.200 Stunden und nähert sich dem "Weltrekord" der NASA. Ferner betreiben Astrium-Ingenieure und Mitarbeiter des I. Physikalischen Instituts gerade in Gießen ein 13,5mal schubstärkeres Aggregat RIT-XT. Mit diesem hätte man beispielsweise die Artemis-Aufspiralmission in zwei Wochen durchführen können. Die Forschungsarbeiten am I. Physikalischen Institut (inzwischen in der Abteilung von Prof. Dr. Karl-Heinz Schartner) konzentrieren sich zur Zeit auf Strahldiagnostik, Komponentenoptimierungen und Modellrechnungen.

Kontaktadresse:

Prof. i.R. Dr. Horst Löb
Prof. Dr. Karl-Heinz Schartner
I. Physikalisches Institut
Heinrich-Buff-Ring 16
35392 Gießen
Tel.: 0641/99-33130, 99-33131 und 99-33140
Fax: 0641/99-139
E-Mail: Karl-Heinz.Schartner@exp1.physik.uni-giessen.de

Christel Lauterbach | idw
Weitere Informationen:
http://www.esrin.esa.it/export/esaCP/ESA9BAVTYWC_index_0.html

Weitere Berichte zu: ESA ESA-Satellit Ionentriebwerk

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein
28.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle
28.03.2017 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE