Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf der Suche nach den Atomen von Raum und Zeit

22.06.2015

Einsteins Allgemeine Relativitätstheorie – die in diesem Jahr 100 Jahre alt wird – ist essentiell für die Beschreibung unseres Universums. Ob und in welchem Umfang sie auch für den mikroskopischen Bereich gilt, ist dagegen nicht ausreichend erforscht. Das Institut für Quantengravitation der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) widmet sich der Entwicklung einer Theorie, die Einsteins Thesen mit den Gesetzen der Quantenphysik verbindet, also einer „Quantentheorie der Gravitation“. Vom 6. bis 10. Juli 2015 treffen sich rund 200 Forschende aus aller Welt bei der Loops '15 Konferenz in Erlangen, um sich über die jüngsten Resultate in der Quantengravitation auszutauschen.

Vor genau 100 Jahren revolutionierte Einstein mit seiner Allgemeinen Relativitätstheorie unser Verständnis von Raum und Zeit. Er zeigte, dass Raum und Zeit nicht unabhängig von anderen physikalischen Vorgängen existieren, sondern in dynamischer Wechselwirkung mit ihnen stehen.

Seine Theorie ist nicht nur essentiell, um unser Universum zu verstehen, sie spielt auch im Alltag eine wichtige Rolle, so muss sie bei der Positionsbestimmung via GPS berücksichtigt werden. Dennoch gibt die Allgemeine Relativitätstheorie den Forschern einige Rätsel auf. So beschreibt sie den Beginn unseres Universums als den so genannten Urknall.

An diesem Anfang von Raum und Zeit verliert die Theorie jedoch ihre Vorhersagekraft, da die durch sie beschriebenen physikalischen Größen unendlich große Werte annehmen würden. Man spricht von einer Singularität. Ähnliches gilt für ihre Aussagen über Schwarze Löcher. Einsteins Theorie besagt, dass die Gravitation – also die Schwerkraft – besonders schwere Sterne am Ende ihres Lebens unaufhaltsam verschluckt und eine Singularität, also ein Loch in der Raumzeit, zurückbleibt.

Dass eine physikalische Theorie in gewissen Bereichen an ihre Grenzen stößt, ist nichts Ungewöhnliches und hat in der Geschichte der Physik immer wieder als Ansporn gedient, alte Konzepte zu hinterfragen und neue Theorien zu entwickeln, die dann in der Lage sind, die Natur auch in extremen Bereichen zu beschreiben.

Eindrucksvoll demonstrierte dies zum Beispiel die Einführung der Quantentheorie zu Beginn des letzten Jahrhunderts, die es erlaubt, physikalische Modelle auch auf atomarer Größenordnung anzuwenden, auf der die bis dahin bekannte klassische Physik keine adäquate Beschreibung der Natur mehr liefern kann. Die Quantentheorie beschreibt die Welt also auf den kleinen, die Allgemeine Relativitätstheorie auf großen Skalen.

Will man die noch existierenden offenen Fragen der Allgemeinen Relativitätstheorie zum Urknall und zu Schwarzen Löchern beantworten, ist es notwendig, Gravitation – und damit die Geometrie von Raum und Zeit – auch auf mikroskopischen Skalen zu verstehen. Die Forschung geht davon aus, dass hierfür eine neue Form der Quantentheorie nötig ist, die nicht nur die Quanteneigenschaften von Atomen beschreiben kann, sondern auch diejenigen von Raum und Zeit – und damit der Gravitation. Gesucht wird also eine Quantengravitationstheorie.

Wie eine solche aussehen könnte und welche physikalischen Konsequenzen sich aus ihr ergeben, ist einer der Forschungsschwerpunkte am Institut für Quantengravitation der FAU. Dort forscht das Team um Prof. Dr. Thomas Thiemann vor allem im Bereich der so genannten Schleifenquantengravitation (Loop Quantum Gravity). Sie ist einer von mehreren möglichen Ansätzen für eine Quantengravitationstheorie.

Welche Vorhersagen die Schleifenquantengravitation über die mikroskopischen Eigenschaften von Gravitation erlaubt, diskutieren Wissenschaftlerinnen und Wissenschaftler bei der diesjährigen Loops ‘15 Konferenz vom 6. bis 10. Juli, deren Gastgeber das Institut für Quantengravitation ist. Unter den Teilnehmern sind renommierte Wissenschaftler wie Prof. Abhay Ashtekar, Prof. Carlo Rovelli und Prof. Lee Smolin, die als Gründerväter der Schleifenquantengravitation gelten.

Lee Smolin ist dank seiner populärwissenschaftlichen Bücher – zuletzt „Im Universum der Zeit: Auf dem Weg zu einem neuen Verständnis des Kosmos“ – auch einer breiteren Öffentlichkeit bekannt geworden. Das Programm der Konferenz beinhaltet längere Plenarvorträge, die u.a. einen Überblick über den derzeitigen Forschungsstand im Bereich der Quantengravitation geben, und kürzere Parallelvorträge, die gerade jüngeren Forscherinnen und Forschern die Möglichkeit bieten, ihre aktuellen Resultate zu präsentieren.

Weitere Informationen zur Veranstaltung unter: www.loops15.de

Ansprechpartner:

Prof. Dr. Kristina Giesel
Tel.: 09131/85-28470
kristina.giesel@gravity.fau.de

Prof. Dr. Hanno Sahlmann
Tel.: 09131/85-28465
hanno.sahlmann@gravity.fau.de

Blandina Mangelkramer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fau.de/

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Wie aus reinen Daten ein verständliches Bild entsteht
05.12.2016 | Ruprecht-Karls-Universität Heidelberg

nachricht Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel
02.12.2016 | Münchner Kreis

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nährstoffhaushalt einer neuentdeckten “Todeszone” im Indischen Ozean auf der Kippe

06.12.2016 | Geowissenschaften

Entschlüsselung von Kommunikationswegen zwischen Tumor- und Immunzellen beim Eierstockkrebs

06.12.2016 | Medizin Gesundheit

Bioabbaubare Polymer-Beschichtung für Implantate

06.12.2016 | Materialwissenschaften