Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler erforschen Sensor, der giftiges Gas in Biogasanlagen in kleinsten Mengen nachweist

26.09.2013
Wenn Holz, Energiepflanzen und organische Abfälle durch Mikroorganismen vergären, entsteht Methan.

In Biogasanlagen hergestellt, kann es im Zuge der Energiewende ins Erdgasnetz eingespeist werden, wenn es frei von Verunreinigungen ist. So dürfen Wasserstoff oder hochgiftiger Schwefelwasserstoff nur in sehr geringen Anteilen darin enthalten sein, um die Verbraucher vor Gesundheits- oder Explosionsgefahren zu schützen.

Nun entwickelt das INM – Leibniz-Institut für Neue Materialien zusammen mit mittelständischen Unternehmen einen Sensor mit besonderen Eigenschaften, der Schwefelwasserstoff verlässlich in niedrigsten Konzentrationen über einen optischen Weg anzeigt.

Für den neuen Sensor wollen die Entwickler am INM eine Funktionsschicht aufbauen, die für den Nachweis von Schwefelwasserstoff (H2S) keinen Sauerstoff benötigt, denn dieser ist in Biogasanlagen nicht vorhanden. Außerdem soll die Schicht ermöglichen, dass der Sensor jederzeit auf Mengen von wenigen Hundertstel Prozent Schwefelwasserstoff reagieren kann und innerhalb kürzester Zeit ausschließlich auf Schwefelwasserstoff anspricht.

Dazu werden die Forscher am INM eine spezielle Funktionsschicht anfertigen, die beim Vorhandensein von Schwefelwasserstoff ihre Eigenschaften ändert. Sie wechselt zum Beispiel ihre Farbe, Farbdurchlässigkeit oder die Art der Lichtstreuung oder Reflexion. „Wir wollen dafür optische Analyseverfahren nutzen, die zurzeit noch nicht auf dem Markt erhältlich sind“, sagt Peter William de Oliveira, Leiter des Programmbereichs Optische Materialien, „sie werden Kernpunkt unserer Neuentwicklungen sein.“

Die Wissenschaftler erwarten, dass selbst bei wenigen Promille Schwefelwasserstoff im Gas eine entsprechende Antwort des Sensors auftritt. „Diese Änderungen können wir mit einem passenden Empfänger dann gut in ein Signal „zu viel Schwefelwasserstoff!!“ umwandeln“, fasst der Materialwissenschaftler zusammen.

Zwar gibt es am Markt derzeit verschiedene Anbieter für solche Sensoren. Sie sind jedoch aus unterschiedlichen Gründen für den Einsatz in Biogasanlagen nicht geeignet: „Viele dieser Sensoren funktionieren über chemische Reaktionen, bei denen Sauerstoff benötigt wird“, erklärt der Chemiker. Andere Sensoren arbeiteten über elektrochemische Methoden oder über Chemolumineszenz. Sie seien entweder zu kostspielig, zu langsam oder zeigten nicht nur Schwefelwasserstoff sondern auch andere Gase an, sodass die Menge von H2S nicht eindeutig ausgewiesen werden kann.

Während das INM bei der Entwicklung der besonderen Schicht Feder führt, erarbeiten die beteiligten Mittelstandsunternehmen die dazugehörige Elektronik sowie die Technik für den Aufbau des gesamten Sensorsystems.

Hintergrund:
Gemeinsam mit den Mittelstandsunternehmen Materion GmbH, Wismar, und Sensolute GmbH, Eggenstein-Leopoldshafen, arbeitet das INM an der Entwicklung „neuartiger Sensorsyteme auf der Basis optisch schaltender Dünnfilme für die Überwachung regenerativ erzeugter Gase“. Das Projekt „OptoSens“ wird vom Bundesministerium für Wirtschaft und Technologie (BMWI) im Rahmen des Programms „Zentrales Innovationsprogramm Mittelstand“ (ZIM) gefördert. Gemeinsam wollen die Projektpartner Ende 2015 einen Sensor für die Produktion im Großmaßstab entwickelt haben. Das Fördervolumen für das INM beträgt 175.000 Euro.
Ansprechpartner:
Dr. Peter William de Oliveira
INM – Leibniz-Institut für Neue Materialien
Leiter Programmbereich Optische Materialien
Tel: 0681-9300-148
E-Mail: peter.oliveira@inm-gmbh.de
Das INM erforscht und entwickelt Materialien – für heute, morgen und übermorgen. Chemiker, Physiker, Biologen, Material- und Ingenieurwissenschaftler prägen die Arbeit am INM. Vom Molekül bis zur Pilotfertigung richten die Forscher ihren Blick auf drei wesentliche Fragen: Welche Materialeigenschaften sind neu, wie untersucht man sie und wie kann man sie zukünftig für industrielle und lebensnahe Anwendungen nutzen? Dabei bestimmen vier Leitthemen die aktuellen Entwicklungen am INM: Neue Materialien für Energieanwendungen, Neue Konzepte für Implantatoberflächen, Neue Oberflächen für tribologische Anwendungen sowie Nanosicherheit. Die Forschung am INM gliedert sich in die drei Felder Chemische Nanotechnologie, Grenzflächenmaterialien und Materialien in der Biologie. Das INM - Leibniz-Institut für Neue Materialien mit Sitz in Saarbrücken ist ein internationales Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Das INM ist ein Institut der Leibniz-Gemeinschaft und beschäftigt rund 190 Mitarbeiter.

Dr. Carola Jung | idw
Weitere Informationen:
http://www.inm-gmbh.de
http://www.leibniz-gemeinschaft.de

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Müll in den Weltmeeren überall präsent: 1220 Arten betroffen
23.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Internationales Netzwerk bündelt experimentelle Forschung in europäischen Gewässern
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise