Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie man sauberes Trinkwasser bekommt

20.04.2004


Forscher der Technischen Universität Berlin untersuchen am Tegeler See in Berlin, welcher Boden welche Schadstoffe im Wasser am besten filtert. Die Ergebnisse können weltweit auf andere Standorte übertragen werden



In Berlin wie auch in anderen Städten nutzen Wasserbetriebe seit Jahrzehnten die Uferfiltration, um sauberes Trinkwasser bereitzustellen. Das Prinzip ist einfach: Man braucht einen See oder Fluss und bohrt im Uferbereich Trinkwasserbrunnen. Das Oberflächenwasser versickert in der Uferzone und gelangt ins Grundwasser. Von dort wird es hoch gepumpt. Aufgrund der natürlichen Filtereigenschaften der Bodenschichten bleiben Schadstoffe an der Bodenmatrix haften und werden im Idealfall von Mikroorganismen abgebaut. Aus dem Brunnen kommt klares, gereinigtes Wasser, dass dann nach einer minimalen weiteren Aufbereitung als Trinkwasser genutzt werden kann. Die genauen Mechanismen, die die Filterwirkung und den mikrobiologischen Abbau beeinflussen, sind jedoch noch weitgehend unbekannt. Sie hängen von der Bodenbeschaffenheit ab, von den pH-Bedingungen, dem Sauerstoffgehalt und natürlich von den vorhandenen Mikroorganismen.



Wissenschaftler der Technischen Universität Berlin haben diese Prozesse im Rahmen eines zweijährigen Forschungsprojekts an Berliner Gewässern untersucht. Unter Leitung von Prof. Martin Jekel vom Institut für Technischen Umweltschutz sind sie den Spuren des Grundwassers durch die Bodenschichten gefolgt und können nun angeben, welcher Boden für welchen Schadstoff der geeignete "Filter" ist. Organische Stoffe beispielsweise werden unter aneoroben Bedingungen, also bei Abwesenheit von Sauerstoff, meist besser abgebaut als unter aeroben Bedingungen.

Ziel der Forschungen ist es, sicherzustellen, dass trotz einer zunehmenden Schadstoffbelastung der Gewässer sauberes Trinkwasser zur Verfügung gestellt werden kann. Dies gelingt nur, wenn man die Prozesse der Uferfiltration und die Transportprozesse kennt. Erst dann können die Brunnen an den optimalen Stellen gesetzt werden.

Eines der untersuchten Gebiete der TU-Forscher ist der Uferbereich rund um den Tegeler See. Zirka 130 Trinkwasserbrunnen gibt es dort. Um den Weg des Wassers zu verfolgen, haben Jekel und seine Kollegen zwischen Ufer und Brunnen mehrere Beobachtungsbrunnen mit unterschiedlichen Tiefen (10-30 Meter) gesetzt. Regelmäßig ziehen sie von dort die Proben und untersuchen, wie sich sowohl Mikroorganismen, Wasserbedingungen und Schadstoffgehalt ändern. Am Ende der Auswertungen werden die Forscher wissen, wie die Brunnen entlang eines Gewässers angeordnet sein müssen, damit man die Filtereigenschaften des Bodens optimal nutzt. Und die Ergebnisse der Berliner Gewässer, dies ist bereits klar, sind allgemein gültig. Sie können auf andere Standorte weltweit übertragen werden.

Weitere Informationen erteilen Ihnen gern: Prof. Martin Jekel, Institut für Technischen Umweltschutz, Tel.: 030-314-23339, Fax: 030-314-23850, martin.jekel@tu-berlin.de oder Dr. Anke Putschew, Tel.: 030-314-25480, Putschew@itu203.ut.tu-berlin.de

Ramona Ehret | idw
Weitere Informationen:
http://www.tu-berlin.de

Weitere Berichte zu: Brunnen Gewässer Mikroorganismus Schadstoff Trinkwasser

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Erste "Rote Liste" gefährdeter Lebensräume in Europa
16.01.2017 | Universität Wien

nachricht Kann das "Greening" grüner werden?
11.01.2017 | Helmholtz-Zentrum für Umweltforschung - UFZ

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau