Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geißeltierchen halten das Rheinwasser sauber

27.01.2003


Kleinste Tiere halten den Rhein sauber


Köln-Preis für Dr. Markus Weitere

... mehr zu:
»Bakterien »Organismus »Plankton

Die Wasserqualität in großen Fließgewässern ist von besonderer Bedeutung, wenn diese - wie zum Beispiel der Rhein - auch zur Trinkwassergewinnung genutzt werden. Der Einfluss kleiner einzelliger Tiere auf die Wasserqualität wurde bereits für eine Reihe von stehenden Gewässern gründlich erforscht. Am Zoologischen Institut der Universität zu Köln entstanden nun erstmals zwei Doktorarbeiten, die diesen Einfluss auch in einem großen Fließgewässer, dem Rhein, untersucht haben. Die beiden Wissenschaftler werden heute für ihre Dissertationen, die von Professor Dr. Hartmut Arndt betreut wurden, mit dem Köln-Preis 2002 ausgezeichnet. Eine der Arbeiten verfasste Dr. Markus Weitere. Seine Dissertation "The heterotrophic nanoflagellates in the water column of the River Rhine: Seasonal and spatial dynamics and their position in the food web" (Die heterotrophen Nanoflagellaten im Freiwasser des Rheins: Saisonale und räumliche Dynamik und ihre Stellung im Nahrungsgewebe) erschien in englischer Sprache.

Dr. Weitere beschreibt die Stellung kleiner einzelliger Tiere, der sogenannten heterotrophen Nanoflagellaten, im Nahrungsgewebes des Rheins. "Nano" gibt den Größenbereich an. Mit einem Durchmesser von 0,002 bis 0,02 Millimetern sind diese Flagellaten ("Geißeltierchen") die kleinsten "Tiere" der Welt. Sie ernähren sich hauptsächlich von Bakterien, womit ihnen eine Schlüsselfunktion in den Gewässern zukommt. Zum einen verhindern sie durch ihre Aktivität, daß sich Bakterien massenhaft vermehren. Zum anderen sind sie ein wichtiges Glied in der Selbstreinigungskette der Gewässer. Dabei werden organische Verunreinigungen von Bakterien aufgenommen, die von den Flagellaten konsumiert werden. Die Flagellaten selber werden wiederum von anderen Tieren im Freiwasser gefressen. Mit jedem Schritt in dieser Nahrungskette werden die organischen Verbindungen zu Kohlendioxid und Nährstoffen abgebaut. Während diese Prozesse in Stillgewässern gut untersucht sind, weiß man bis heute nur wenig über die Bedeutung der Flagellaten in Fließgewässern. Doch gerade in großen Fließgewässern wie dem Rhein, der auch ein wichtiges Trinkwasserreservoir ist, könnten solche mikrobiellen Prozesse von großer Bedeutung sein.


Durch seine Forschungsarbeit konnte Dr. Weitere erstmalig für ein großes Fließgewässer die Bedeutung der Flagellaten - besonders in ihrer Rolle als Vertilger von Bakterien - sowie deren Steuerung im Ökosystem erfassen. Die Untersuchungen wurden vor allem im Ökologischen Rheinlabor der Universität zu Köln durchgeführt. Hier konnten die Organismen aus der fließenden Welle entnommen und die empfindlichen Proben sachgerecht aufgearbeitet werden. Zusätzlich nahm der Kölner Zoologe Proben am unteren Niederrhein, um Änderungen entlang der Fließstrecke zu erfassen. Diese Proben wurden in der Außenstelle des Zoologischen Instituts der Universität zu Köln in Grietherbusch aufgearbeitet. Die Freilandarbeiten wurden von verschiedenen Laborexperimenten begleitet, unter anderem um die Wachstumsleistungen der Flagellaten sowie deren Verluste an verschiedene Vertreter des Planktons (Gesamtheit der im Wasser schwebenden tierischen und pflanzlichen Organismen) und des Benthos (Gesamtheit der auf dem Gewässerboden lebenden Organismen) zu messen.

Während der 21-monatigen Freilanduntersuchung lag die Anzahl der Flagellaten pro Volumeneinheit Wasser zwischen 7 und 4890 Individuen pro Milliliter; der Durchschnitt lag bei 1100 Individuen pro Milliliter. Dabei wurde eine Fülle verschiedener Arten und Lebensformen nachgewiesen. So leben zum Beispiel einige der winzigen Einzeller auf kleinen Schwebstoffen im Wasser und "weiden" hier anheftende Bakterien ab. Andere Flagellatenarten schwimmen frei und ernähren sich von im Wasser verteilten Bakterien. Innerhalb des Zooplanktons (Gesamtheit der im Wasser schwebenden Tiere) waren die Flagellaten die dominante Gruppe mit Anteilen von über 70 Prozent an der gesamten Zooplankton-Biomasse. Zudem waren sie sehr produktiv. In sogenannten Fraktionierungsexperimenten, in denen vorher sämtliche Freßfeinde der Flagellaten entfernt wurden, verdoppelten sich die Flagellaten durchschnittlich alle 12 Stunden im Sommer und alle 40 Stunden im Winter; damit sind sie die bei weitem produktivste Gruppe innerhalb des untersuchten Zooplanktons. Zur Aufrechterhaltung dieser hohen Wachstumsleistung benötigen sie große Mengen an Bakterien, die in den Experimenten durchschnittlich etwa 50 Prozent der bakteriellen Produktion entsprachen.

Aufgrund des schnellen Wachstums und der geringen Verluste innerhalb des Planktons war zunächst zu erwarten, daß die Flagellaten entlang der Fließstrecke stark zunehmen. Dies bestätigte sich jedoch nicht, das heißt ein großer Teil der Flagellatenproduktion "verschwindet" durch andere Prozesse. Verschiedene Indizien deuten darauf hin, daß diese Verluste durch Tiere auf dem Gewässerboden (Muscheln, Rädertierchen, andere tierische Einzeller) verursacht werden, die die im Plankton schwebenden Organismen als Nahrung nutzen. Somit verläuft ein großer Teil des Stoffflusses - und damit der Selbstreinigungskette - im Rhein von den Bakterien über die heterotrophen Flagellaten zum Benthos. Dieses Ergebnis überraschte, weil man in der Gewässerökologie bisher angenommen hatte, daß der Einfluss des Benthos auf das Plankton gering sei.

Die enge Verbindung zwischen Plankton und Benthos hat Folgen für die Steuerung der Flagellaten und des planktischen Nahrungsgewebes insgesamt. So konnte Dr. Weitere durch seine Forschungen zeigen, daß die Zahl der Flagellaten mit steigendem Wasserstand sehr stark zunimmt. Der Grund liegt in einer Abnahme der relativen Verluste an das Benthos, da mit der Zunahme der Wassermassen die Kontaktwahrscheinlichkeit zwischen den schwebenden Organismen und den auf dem Gewässerboden lebenden Organismen sinkt. In gleichem Maße könnte theoretisch auch die Dichte der Bakterien bei Hochwasser bedenklich zunehmen, da das Benthos dann die großen Mengen an Bakterien in den ansteigenden Wassermassen nicht mehr regulieren kann. Diese Schonung der Bakterien wird jedoch durch die Vermehrung der schnell wachsenden Flagellaten ausgeglichen, die bei Hochwasser bis zu 100 Prozent der bakteriellen Produktion fressen können und so eine Zunahme der Bakteriendichte verhindern.

Für Rückfragen stehen Ihnen Dr. Markus Weitere unter der Email-Adresse mweitere@zedat.fu-berlin.de und Professor Dr. Harmut Arndt unter der Telefonnummer 0221/470-3100, der Fax-Nummer 0221/470-5932 und unter der Email-Adresse Hartmut.Arndt@uni-koeln.de zur Verfügung.

Eva Faresin | idw
Weitere Informationen:
http://www.uni-koeln.de/pi/

Weitere Berichte zu: Bakterien Organismus Plankton

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Der Monsun und die Treibhausgase
18.09.2017 | Forschungszentrum Jülich

nachricht Artenschützer schlagen Alarm: Papageien noch bedrohter als befürchtet
15.09.2017 | Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie