Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Alpine Pflanzen durch Klonung unsterblich

02.04.2009
Klimawandel und Mensch bedroht hohe Vielfalt der Gebirgsflora

Alpine Pflanzen leisten einen überraschend hohen Beitrag zur gesamten biologischen Vielfalt und können mehrere Jahrhunderte alt werden. Das berichtet das Buch "The Biology of Alpine Habitats", das soeben im Verlag der Oxford University Press erschienen ist.

Es bietet erstmals fundierten Einblick in den aktuellen Wissensstand über weltweite alpine Lebensräume. "Das Buch wurde für die internationale Fachwelt der Ökologen sowie für interessierte Laien geschrieben", betont der Autor Georg Grabherr, Leiter des Departments für Naturschutzbiologie, Vegetations- und Landschaftsökologie der Universität Wien im pressetext-Interview. Ein Schwerpunkt des Werks ist die Gefährdung der biologischen Vielfalt durch den Klimawandel.

Hochgebirgsregionen verfügen trotz ihrer kargen Lebensumstände über eine hohe biologische Vielfalt. Jede fünfte der 11.000 verschiedenen Blütenpflanzen Europas lebt an oder oberhalb der Waldgrenze, wobei die höchste Diversität in den Alpen, in den Pyrenäen sowie im Kaukasus festzustellen ist. Dieser hohe Artenreichtum beruht einerseits auf der geringen Umgestaltung der Gebirgsregionen durch den Menschen, andererseits auf dem hohen Anpassungspotenzial der Pflanzen. "Außer den Bäumen können in den hohen Regionen praktisch alle Pflanzengruppen existieren", so Grabherr. Einige der Pflanzen seien so robust, dass ihre größte Bedrohung die Zerstörung durch Planierraupen darstellt, während sie der Klimawandel kaum berührt. "Teilweise haben sie ein so hohes Alter, dass sie bereits mehrere Klimaschwankungen überdauert haben", so der Ökologe.

Das hohe Alter bestimmter Gebirgspflanzen ist eine der überraschendsten Erkenntnisse, die das Buch beschreibt. "Vor allem die wichtigen Arten, die auf Bergen die Urwiesen bilden, leben durch die Bildung von Klonen praktisch ewig weiter und können so Hunderte, wenn nicht Tausende von Jahren alt werden. Dazu bildet der neu gewachsene Keimling einen Horst und stirbt nach bestimmter Zeit im Zentrum ab, während die Ränder weiterwachsen", so Grabherr. Der Nachweis dafür gelang durch die Beobachtung der horizontalen Ausbreitung von Pflanzen. Als Beispiel führt Grabherr die Krummsegge an, ein ab 2.000 Höhenmetern anzutreffendes Sauergras. "Ihr Wachstum an beiden Rändern beträgt einen Millimeter pro Jahr, somit ist ein Horst von zehn Zentimetern 50 Jahre alt." Bisher habe man 120 Jahre alte Horste dokumentiert, ineinander gewachsene Horste auf den meisten Urwiesen seien jedoch wesentlich älter. "Wüstenpflanzen erreichen durch dieselbe Klon-Strategie übrigens ein Alter von bis zu 11.000 Jahren."

"Das genaue Wissen um die Gebirgspflanzen ist für den Menschen aus mehreren Gründen wichtig", so Grabherr. Einerseits seien sie wichtige Indikatoren für die Reaktion der Natur auf den Klimawandel, da die Hochgebirge zu den Regionen mit den wenigsten menschlichen Einwirkungen zählen, ganz im Gegensatz zum Flachland. "Fünfzig Jahre Ackern mit Gülle bildet für die unmittelbare Natur eine viel stärkere Einflussnahme, als sie jemals ein Klimawandel bewirken kann", so Grabherr. Zweitens könne nur so der drohende Verlust an Biodiversität in Gipfelregionen erkennbar gemacht werden. "In den Australischen Alpen oder in den nördlichen Kalkalpen beträgt die alpine Zone nur 200 Höhenmeter oder weniger, was der Verschiebung der Klimazonen bei nur einem Grad Temperaturunterschied entspricht. Prognosen sprechen jedoch von einer bevorstehenden Klimaerwärmung von drei oder vier Grad."

Die aktuelle globale Erwärmung stellt für Gebirgspflanzen eine Situation dar, die nie zuvor beobachtet wurde, betont Grabherr. "Bisher waren die Auswirkungen von Veränderungen stets lokal begrenzt, etwa infolge der Errichtung von Schipisten am Berg. Nun sind sie jedoch global." Forschungsprojekte wie die in Wien gestartete internationale Initiative GLORIA http://www.gloria.ac.at , deren Leiter und Mitbegründer Grabherr ist, zeigen immer deutlicher, dass bestimmte Kältepflanzen im Gebirge in stets höhere und kühlere Regionen wandern, bis sie keinen Lebensraum mehr finden und aussterben. "Diese Migration ist jedoch ein Prozess, der langsamer als der Klimawandel erfolgt. Für diesen Nachweis braucht es Langzeit-Beobachtungen über viele Jahrzehnte", so der Wiener Ökologe. Befriedigende Konzepte zur Rettung dieser Pflanzen gebe es keine, abgesehen vom Versuch, Samen aller weltweiten Pflanzen in großen Samenbanken zu speichern. Diese Strategie bezeichnet Grabherr als teuer und unsicher, denn niemand könne garantieren, dass die Samen in 50 Jahren noch existieren. "Zudem nützt es der Biodiversität wenig, wenn eine Pflanze in der Samenbank schlummert, jedoch in der Natur bereits ausgestorben ist." Die Vielfalt der alpinen Flora sei so groß, dass ein Überleben nach dem Arche-Noah-Prinzip undenkbar sei, so der Buchautor abschließend zu pressetext.

Johannes Pernsteiner | pressetext.austria
Weitere Informationen:
http://www.univie.ac.at/cvl

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Von der Weser bis zur Nordsee: PLAWES erforscht Mikroplastik-Kontaminationen in Ökosystemen
20.09.2017 | Universität Bayreuth

nachricht Der Monsun und die Treibhausgase
18.09.2017 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie