Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikroskopie mit einer Quantenspitze

30.05.2011
Eine Wolke aus ultrakalten Rubidiumatomen benutzen Tübinger Physiker als Sonde, um nanostrukturierte Oberflächen abzubilden.

Mikroskope machen Kleines sichtbar – das sagt ihr Name. Doch moderne Mikroskope tun das oft über den Umweg, dass sie Oberflächen nicht mit optischen Methoden darstellen, sondern mit einer feinen Spitze abtasten.


Eine ultrakalte Atomwolke (gelb) wird in einer Magnetfalle festgehalten und über eine dreidimensional strukturierte Oberfläche geführt. Im Kontaktmodus lässt sich ein Verlust von Atomen aus der Wolke messen, der abhängig von der Topographie der Oberfläche ist. Im dynamischen Modus verändern sich Frequenz und Amplitude einer Schwingung des Massenzentrums der Wolke abhängig von der Oberflächenstruktur. Auf beiden Wegen lässt sich die Topographie der Oberfläche abbilden. Universität Tübingen, AG Nano-Atomoptik

Dort, wo optische Abbildungsmethoden an ihre Grenzen kommen, zeigen solche Rastersondenmikroskope mit unterschiedlichen Techniken noch Strukturen von Millionstel Millimeter Größe. Mit ihrer Hilfe lassen sich Phänomene der Nanowelt sichtbar machen und sogar gezielt beeinflussen. Das Herzstück eines Rastersondenmikroskops ist eine beweglich aufgehängte Spitze, die, vergleichbar mit der Nadel eines Plattenspielers, auf feine Unebenheiten der Probenoberfläche reagiert und diese in Signale umwandelt, die sich mit Computerhilfe als Bild darstellen lassen.

Forschern der Universität Tübingen ist es nun gelungen, dieses Herzstück eines Rastersondenmikroskops nicht aus einem festen Material wie beim Plattenspieler herzustellen, sondern aus einer ultrakalten verdünnten Gaswolke. Dabei kühlen sie ein besonders reines Gas aus Rubidiumatomen auf Temperaturen unterhalb von einem Millionstel Grad über dem absoluten Nullpunkt ab und speichern die Atome in einer Magnetfalle. Diese „Quantenspitze“ kann präzise positioniert werden und ermöglicht so die Abtastung nanostrukturierter Oberflächen. Mit dieser Methode seien genauere Messungen der Wechselwirkungen zwischen Atomen und Oberflächen möglich, und durch weiteres Abkühlen der ultrakalten Sondenspitze entstehe ein sogenanntes Bose-Einstein-Kondensat, mit dem sich die Auflösung der Messung erheblich steigern lasse, berichten die Wissenschaftler um den Inhaber des Lehrstuhls für Nano-Atomoptik, Prof. Dr. József Fortágh, und seine Mitarbeiter Dr. Andreas Günther und den Doktoranden Michael Gierling. Gierling ist Erstautor der Studie, die am 29. Mai als Online-Vorabveröffentlichung der Fachzeitschrift „Nature Nanotechnology“ erschienen ist.

Die Wissenschaftler haben die Spitze ihres Kaltatom-Rastersondenmikroskops an einer Probe demonstriert, auf welcher sich senkrecht gewachsene Kohlenstoff-Nanoröhren befanden. Von einer Art magnetischem Förderband wurde die Spitze über die Probe geführt. Bei einer ersten Messung im sogenannten Kontaktmodus streiften die Erhebungen auf der Probe einzelne Atome aus der Wolkenspitze, die im Abstand weniger Mikrometer über sie hinweg fuhr. Dieser Verlust diente als Maß für Position und Höhe der Nanoröhrchen und zur Abbildung der Oberflächentopographie.

Wenn die Temperatur eines Atomgases immer näher an den absoluten Nullpunkt herankommt, tritt ein quantenmechanisches Phänomen ein, das aus der Wolke ein sogenanntes Bose-Einstein-Kondensat macht. In diesem Aggregatzustand sind die einzelnen Atome nicht mehr voneinander zu unterscheiden. Sie bilden sozusagen alle gemeinsam ein einziges großes Atom. Mit solchen Bose-Einstein-Kondensaten gelang es den Tübinger Wissenschaftlern, auch einzelne freistehende Nanoröhrchen abzubilden. Durch künftige Weiterentwicklungen des Kaltatom-Rastersondenmikroskops könne, so die Forscher, die Auflösung von bisher etwa acht Mikrometern um theoretisch den Faktor tausend verbessert werden.

Auch im sogenannten dynamischen Messmodus funktionierte das Mikroskop. Die Forscher erzeugten erneut Bose-Einstein-Kondensate dicht über der Probe. Brachten sie diese Kondensate senkrecht zur Oberfläche in Schwingungen, so änderten sich die Frequenz und die Schwingungsweite abhängig von der Topographie der Probenoberfläche. Auch auf diesem Weg erhielten sie ein hoch aufgelöstes Bild der Oberfläche. Der Vorteil dieses Messverfahrens liege darin, dass keine Atome aus der Wolke verloren gehen, schreiben die Forscher. Das könne von Vorteil in Fällen sein, in denen solche von der Probe adsorbierte Atome die Messung beeinflussen könnten.

Als Fazit formulieren die Forscher: „Die extreme Reinheit der Sondenspitze und die Möglichkeit, die atomaren Zustände in einem Bose-Einstein-Kondensat quantenmechanisch zu kontrollieren, eröffnen für die Zukunft neue Möglichkeiten der Rastersondenmikroskopie mit nicht-klassischen Sondenspitzen.“ Darüber hinaus erhoffen sie sich neue Anwendungen von der jetzt erprobten Möglichkeit, ultrakalte Quantengase und Nanostrukturen miteinander in Verbindung zu bringen.

Die Studie entstand im Rahmen des BMBF-Förderprogramms „NanoFutur“ und in Zusammenarbeit mehrerer Arbeitsgruppen des Center for Collective Quantum Phenomena (CQ) Tübingen, an dem verschiedene Arbeitsgruppen des Fachbereichs Physik der Mathematisch-Naturwissenschaftlichen Fakultät beteiligt sind.

M. Gierling, P. Schneeweiß, G. Visanescu, P. Federsel, M. Häffner, D. P. Kern, T. E. Judd, A. Günther und J. Fortágh: Coldatom scanning probe microscopy. Nature Nanotechnology, Online-Vorabveröffentlichung vom 29. Mai 2011, DOI: 10.1038/NNANO.2011.80

Kontakt:
Dr. Andreas Günther & Prof. Dr. József Fortágh
Universität Tübingen,
Mathematisch-Naturwissenschaftliche Fakultät, Physikalisches Institut
Telefon: +49 7071 29-76281 und 29-76270
E-Mail: a.guenther@uni-tuebingen.de, fortagh@uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Personalisierte Medizin – Ein Schlüsselbegriff mit neuer Zukunftsperspektive
14.07.2017 | Institut für Bioprozess- und Analysenmesstechnik e.V.

nachricht Enterprise 2.0 ist weiterhin bedeutendes Thema in Unternehmen
03.07.2017 | Hochschule RheinMain

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy