Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Meta-Roadmap Nanomaterialien - Zukünftige Entwicklungen und Anwendungen

12.01.2010
Eine umfassende Übersicht über die zu erwartenden Entwicklungen von Nanomaterialien und ihren Anwendungen bietet die vorliegende Meta-Roadmap.

Basis ist eine Metaanalyse ausgewählter internationaler Roadmaps und ein anschließender Validierungs- und Rückkopplungsprozess mit Fachexperten. Vorrangiges Ziel dieser Roadmap, die im Auftrag des Bundesministeriums für Bildung und Forschung (BMBF) erarbeitet wurde, ist die Unterstützung aller Akteure aus Forschung, Industrie und Politik bei der mittelfristigen strategischen Ausrichtung zukünftiger Aktivitäten zur Erforschung und Entwicklung innovativer Nanomaterialien zum Einsatz in verschiedenen Anwendungsfeldern.

Schon auf den ersten Blick wird deutlich, welche Vielfalt an unterschiedlichen Nanoobjekten und nanostrukturierten Materialien aus sämtlichen Werkstoffklassen erforscht und entwickelt werden. Vor dem Hintergrund dieser fachlichen und thematischen Breite ist die Schaffung von Überblickwissen ein wesentliches Element der Vorbereitung und Unterstützung von strategischen Entscheidungen, um Innovationsprozesse auf diesem Gebiet weiter voranzutreiben.

Die vorliegende Roadmap ist als Meta-Roadmap konzipiert, d. h. ihr Kern basiert auf der Analyse verschiedener Nanomaterialien-Roadmaps, die in den letzten Jahren veröffentlicht wurden. Für ca. 35 unterschiedliche Nanomaterialien wird die weitere Entwicklung prognostiziert: Die erwarteten Entwicklungsstufen von der Grundlagenforschung über die angewandte Forschung und erste Anwendungen bis hin zur breiten Marktdurchdringung werden für verschiedene Anwendungen bis zum Jahr 2020 dargestellt. Hintergrundinformationen zum aktuellen F&E-Stand, zum Anwendungs- und Marktpotenzial, zur Publikations- und Patententwicklung sowie zur Ausgangssituation in Deutschland ergänzen das Bild.

Zugeordnet werden die Ergebnisse den Anwendungsbereichen Energie- und Umwelttechnik, Medizin, Automobilbau, Informations- und Kommunikationstechnik, Hoch- und Tiefbau sowie Maschinenbau. So bieten Nanomaterialien beispielsweise im gesamten Energiesektor von der Primärenergiegewinnung über die Energiewandlung, -weiterleitung und -speicherung die Möglichkeit, wesentliche Beiträge für eine nachhaltige Energieversorgung zu leisten. Bei einigen neuen Technologien zur alternativen Energieerzeugung etwa durch neuartige Solarzellen oder zur Energiespeicherung mittels besonders leistungsfähiger Batterien sind durch den Einsatz von Nanomaterialien entscheidende Fortschritte zu erwarten. Aber auch bei der konventionellen Energieerzeugung und vor allem bei der Nutzung von Energie durch den Verbraucher können Nanomaterialien zur Effizienzsteigerung und Ressourceneinsparung beitragen.

Beispiel Medizin: Hier wird intensiv an verschiedenen Nanomaterialien für die In-vivo- und In-vitro-Diagnostik, für die Arzneimittelentwicklung, für den Transport und die gezielte Freisetzung von Wirkstoffen, aber auch zum Einsatz in Therapieverfahren oder als funktionale nanostrukturierte Implantate geforscht. Nanomedizinische Verfahren ermöglichen die Diagnose und gezielte Behandlung von Krankheiten auf molekularer Ebene. Sie können zukünftig einen wesentlichen Beitrag zur Entwicklung von sehr spezifischen Therapieformen mit geringeren Nebenwirkungen und zielgerichtet einsetzbaren medizintechnischen Produkten liefern. Für eine erfolgreiche Umsetzung der in der Roadmap dargestellten Prognosen - gleich in welchem Anwendungsbereich - ist neben der wissenschaftlichen und technologischen Weiterentwicklung auch eine kontinuierliche Begleitung durch umfassende Maßnahmen zur Sicherheits- und Risikoforschung bezogen auf den gesamten Lebenszyklus von Nanomaterialien erforderlich.

Die vorliegende Meta-Roadmap Nanomaterialien entstand im Rahmen der Innovationsbegleitung für das BMBF und wurde von der VDI Technologiezentrum GmbH in Zusammenarbeit mit der Bundesanstalt für Materialforschung und -prüfung (BAM) erstellt.

Ansprechpartner:

Dr. Oliver Krauss
Zukünftige Technologien Consulting
VDI Technologiezentrum GmbH
VDI-Platz 1
40468 Duesseldorf
Tel. + 49 (0) 211 62 14 - 309
Fax + 49 (0) 211 62 14 - 139
krauss@vdi.de

Eva Cebulla | idw
Weitere Informationen:
http://www.vdi.de
http://www.zukuenftigetechnologien.de/pdf/Band85_Meta-Roadmap_Nanomaterialien.pdf
http://www.zukuenftigetechnologien.de/publikationen.php

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Wie gesund werden wir alt?
18.09.2017 | Medizinische Hochschule Hannover

nachricht Entrepreneurship-Studie: Großes Potential für Unternehmensgründungen in Deutschland
15.09.2017 | Alexander von Humboldt Institut für Internet und Gesellschaft

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie