Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Globale Studie zur Landnutzung offenbart deutlichen Verlust an Biodiversität

02.04.2015

Die Intensivierung der Landwirtschaft und voranschreitende Landnahme haben ihren Preis: sie gehen vor allem zu Lasten der lokalen Ökosysteme und führen zu einem hohen Artenverlust.

Anhand einer Fülle von Daten aus allen Kontinenten erstellte ein internationales wissenschaftliches Projekt ein umfassendes Bild von den Effekten der Landnutzung seit 1500 bis heute.


Intensive Landwirtschaft, hier in Sachsen-Anhalt

Foto: Istvan Hejja

Die Studie, die Modellierung und Beobachtungsdaten kombiniert, zeigt, dass die Landwirtschaft bis 2005 für einen Artenschwund von 13,6 Prozent in regionalen Ökosystemen verantwortlich ist im Vergleich zur vorindustriellen Ära. Weitere Verluste könnten durch korrigierende Maßnahmen vermieden werden.

Der Artenreichtum und die Vielfalt der Ökosysteme unterliegen einem starken Druck: der Mensch verändert die Lebensräume, zersiedelt die Landschaft, verschmutzt die Umwelt und verändert das Klima. Wie hoch ist zukünftig das Risiko des Artensterbens und des Rückgangs von Populationen? Antworten auf diese Frage gibt die im Fachjournal Nature am 2. April 2015 publizierte Studie.

Unter Federführung des Natural History Museums in London und mit Beteiligung mehrerer britischer Universitäten sowie des Max Planck Instituts für Biogeochemie in Jena haben die Wissenschaftler über 280 Veröffentlichungen eingehend untersucht und das Vorkommen von 26.593 Pflanzen- und Tierarten überprüft.

Dazu erstellten sie eine umfangreiche Datenbank, in der Veränderungen der Landnutzung mit Daten zu Änderungen in der Zusammensetzung und Diversität innerhalb einzelner Habitate kombiniert wurden. Die Ergebnisse veranschaulichen, wie sehr der Mensch in den vergangenen 500 Jahren durch die Landbewirtschaftung auf das regionale Artenvorkommen eingewirkt hat.

Das Team schlussfolgert, dass, wenn die Menschheit weiter so verfährt wie bisher, sich der zukünftige Artenrückgang besonders in den artenreichen, aber ökonomisch schwachen Ländern konzentrieren wird. Durchschnittlich wäre ein weiterer Rückgang des Artenreichtums um 3,4 Prozent bis 2100 zu erwarten.

Dr. Jens Kattge vom Max-Planck-Institut für Biogeochemie hat Wichtiges zu den Untersuchungen beigetragen. Er konnte zeigen, dass die durchschnittliche Höhe der Vegetation mit zunehmender Landnutzung sinkt. Dies ist ein deutlicher Hinweis auf Änderungen der Ökosystemfunktionen – insbesondere auf Einschränkungen im Wasserhaushalt - durch den Verlust an Artenreichtum.

Achim Steiner vom UN Umweltprogramm UNEP erklärt: „ So wie unser Verständnis über die Auswirkung unseres Handels und der dramatische Artenverlust wachsen, sollten im gleichen Zug auch unsere Bemühungen wachsen, das Ruder herumzureißen. Die Einführung solider Richtlinien zur Unterstützung effektiver Kohlenstoffmärkte und die Einführung von Landnutzungspraktiken zur Erhaltung natürlicher Habitate sind nur ein Beispiel dafür.“

Tim Newbold, Leitautor der Studie ergänzt: „Die schlimmste Version unserer Szenarien würde einen herben Schlag für die meisten Regionen dieser Erde bedeuten. Unsere Modelle sagen bei weiterer Ausdehnung der landwirtschaftlichen Flächen, insbesondere in den ärmeren Ländern, einen rasanten weiteren Artenverlust voraus. Jedoch zeigen wir auch Handlungsoptionen auf, die eine Umkehr der Artenverluste bewirken können- auch für die armen Länder.“

Die Studie ist ein Ergebnis des PREDICTS Projekts (www.predicts.org.uk). Das PREDICTS Projekt ist unter Mitwirkung des MPI für Biogeochemie um eine weitere Förderungsperiode verlängert worden. Insbesondere soll die Auswirkung des Verlustes an Artenzahlen auf wichtige Ökosystemfunktionen näher untersucht werden.

Original-Veröffentlichung
Global effects of land use on local terrestrial biodiversity
Tim Newbold, Lawrence N. Hudson, Samantha L.L. Hill, Sara Contu, Igor Lysenko, Rebecca A. Senior, Luca Börger, Dominic Bennett, Argyrios Choimes, Ben Collen, Julie Day, Adriana De Palma, Sandra Díaz, Susy Echeverria-Londoño, Melanie Edgar, Anat Feldman8, Morgan Garon, Michelle L. K. Harrison, Tamera Alhusseini, Daniel J. Ingram, Yuval Itescu, Jens Kattge, Victoria Kemp, Lucinda Kirkpatrick, Michael Kleyer, David Laginha Pinto Correia, Callum Martin, Shai Meiri, Maria Novosolov, Yuan Pan, Helen R.P. Phillips, Drew W. Purves, Alexandra Robinson, Jake Simpson, Sean Tuck, Evan Weiher, Hannah J. White, Robert M. Ewers, Georgina M. Mace, Jörn P.W. Scharlemann, Andy Purvis. Nature 520, 45–50 (02 April 2015) doi:10.1038/nature14324

Kontakt
Dr. Jens Kattge
Abteilungsübergreifende Max-Planck Fellow-Gruppe
Funktionelle Biogeographie
Tel: +49 (0)3641 57 6226
jkattge(at)bgc-jena.mpg.de

Weitere Informationen:

https://www.bgc-jena.mpg.de/functionalbiogeography/ - Webseite der Forschungsgruppe Funktionelle Biogeographie
https://www.try-db.org/TryWeb/Home.php -TRY Datenbank
http://www.predicts.org.uk - PREDICTS Projekt

Susanne Héjja | Max-Planck-Institut für Biogeochemie

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Zirkuläre Wirtschaft: Neues Wirtschaftsmodell für die chemische Industrie?
28.07.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Unternehmen entwickeln sich zu Serviceanbietern
25.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Zirkuläre Wirtschaft: Neues Wirtschaftsmodell für die chemische Industrie?

28.07.2017 | Studien Analysen

Assistenzsysteme für die Blechumformung

28.07.2017 | Maschinenbau

Ruckartige Bewegung schärft Röntgenpulse

28.07.2017 | Physik Astronomie