Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Evolution in der Nanowelt

30.10.2007
Weltweit ist es Forschern aus Karlsruhe und Stuttgart erstmals gelungen, Moleküle bei der Selbstorganisation direkt zu beobachten

Wie verhalten sich die molekularen Bausteine des Lebens beim Übergang vom Chaos zur Ordnung? Neue Antworten auf diese Schlüsselfrage der Evolution gibt die gemeinsame Studie zweier Forschergruppen der Max-Planck-Gesellschaft und des Forschungszentrums Karlsruhe in der Helmholtz-Gemeinschaft. In der aktuellen Ausgabe des Fachblatts "Proceedings of the National Academy of Sciences of the USA" zeigen die Wissenschaftler, wie sich aus chaotischen Mischungen von organi-schen Molekülen hoch geordnete Strukturen formieren. Erstmals konnten dabei Schlüsselmechanismen wie Selbsterkennung, aktive Selektion und Fehlerkorrektur direkt und im Detail beobachtet werden. Dieser Einblick in die Prozesse der molekularen Selbstorganisation gibt wichtige Impulse für das Verständnis der biologischen Evolution. Darüber hinaus lässt er sich für das nanotechnologische Design gänzlich neuartiger Materialien und Komponenten nutzbar machen.


Schnappschuss der Evolution: Die mit modernster Tunnelmikroskopie erstellte Aufnahme zeigt die Selbstorganisation von nanometergroßen, molekularen Komponenten auf einer Kupferoberfläche - einmal als Simulation (im Hintergrund), einmal als experimentelles Abbild der Moleküle selbst (im Vordergrund). Deutlich erkennbar ist die größenabhängige Anordnung zweier Molekülarten (dunkel- und hellblau) in leiterartigen Teilstrukturen. Der Abstand zwischen den molekularen "Sprossen" beträgt ca. einen Nanometer (1 Milliardstel Meter). Bild: Forschungszentrum Karlsruhe und Max-Planck-Institut für Festkörperforschung Stuttgart

Das spontane Entstehen von Ordnung aus zufälligen Gemischen unbelebter, meist molekularer Bausteine heraus ist ein Schlüsselschritt in der Evolution biologischer Materialien. Gesteuert wird diese Selbstorganisation der Materie von den spezifischen Eigenschaften der nur wenige Nanometer großen Moleküle (1 Nanometer = 1 Milliardstel Meter). In der "Kommunikation" der Moleküle wirken diese Eigenschaften wie elementare Algorithmen, die, ähnlich wie in einem Computerprogramm, "ausgelesen" werden können. "Die Fähigkeit von Molekülen, sich über Schlüsselprozesse wie aktive Selektion, Selbsterkennung und Fehlerkorrektur zu hoch organisierten Strukturen zu ordnen, ist eine grundlegende Voraussetzung für die Bildung molekularer Systeme bis hin zu biologischen Organismen wie Zellen oder Membranen", sagt Klaus Kern, Direktor der Abteilung für Nanowissenschaft am Max-Planck-Institut für Festkörperforschung in Stuttgart.

Die Gruppe um Klaus Kern platzierte die Moleküle auf hochreinen Kupferoberflächen und erhitzte die Mischung, um die Beweglichkeit der Bausteine sicherzustellen. "Die Molekülbewegung auf der Oberfläche hat den Vorteil, dass wir die nanoskaligen molekularen Anordnungen mithilfe modernster, höchstempfindlicher Mikroskopieverfahren direkt wahrnehmen können", erläutert Alexander Langner vom Stuttgarter Max-Planck-Institut die Versuchsanordnung. Die Erzeugung derart winziger Anordnungen, die zum Teil 50 000-mal kleiner sind als ein Haar, ist keine einfache Aufgabe: "Mit konventionellen Verfahren wäre die Fertigung außerordentlich teuer und aufwändig gewesen", sagt sein Kollege Steven Tait. "Unsere Strategie besteht darin, von uns ’programmierte’ Bausteine zu verwenden, die sich dann in Eigenregie zu den gewünschten Strukturen anordnen."

Für die Planung dieses Selbstorganisationsprozesses war die Karlsruher Forschergruppe um Mario Ruben, Gruppenleiter am Institut für Nanotechnologie des Forschungszentrums Karlsruhe, verantwortlich. Durch gezieltes Design "programmierten" die Helmholtz-Wissenschaftler die Moleküle mit denjenigen Informationen, die im Selbstorganisationsprozess zum Zuge kommen sollten. "Eine gezielte, sich selbst organisierende Ordnung chaotischer Molekülgemische gelingt nur dann", so Mario Ruben, "wenn die in die Moleküle eingebauten Programme sorgfältig angelegt und überdies robust genug sind, um die Mechanismen der Selbstselektion, der Selbsterkennung und der aktiven Fehlerkorrektur in Gang zu setzen." Das in der Studie erfolgreich erprobte, der Natur abgeschaute Design von Molekülen gibt wichtige Impulse für das Verständnis der biologischen Evolution. Darüber hinaus eröffnet es vielversprechende Möglichkeiten einer programmierbaren Manipulation der Materie auf molekularer Ebene mitsamt der darauf aufbauenden Fertigung gänzlich neuartiger Materialien und Komponenten.

Die Online-Version der Studie von Alexander Langner, Steven Tait, Nian Lin, Klaus Kern (alle MPI für Festkörperforschung Stuttgart) sowie Chandrasekar Rajadurai und Mario Ruben (beide Forschungszentrum Karlsruhe) kann ab Dienstag, den 30. Oktober unter http://www.pnas.org/papbyrecent.shtml abgerufen werden.

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de
http://www.pnas.org/papbyrecent.shtml

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Studie zu sicherem Autofahren bis ins hohe Alter
19.06.2017 | Leibniz-Institut für Arbeitsforschung an der TU Dortmund

nachricht Welche Auswirkungen hat die Digitalisierung der Industrieproduktion auf Jobs und Umweltschutz?
16.05.2017 | Institute for Advanced Sustainability Studies e.V.

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie