Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Evolution in der Nanowelt

30.10.2007
Weltweit ist es Forschern aus Karlsruhe und Stuttgart erstmals gelungen, Moleküle bei der Selbstorganisation direkt zu beobachten

Wie verhalten sich die molekularen Bausteine des Lebens beim Übergang vom Chaos zur Ordnung? Neue Antworten auf diese Schlüsselfrage der Evolution gibt die gemeinsame Studie zweier Forschergruppen der Max-Planck-Gesellschaft und des Forschungszentrums Karlsruhe in der Helmholtz-Gemeinschaft. In der aktuellen Ausgabe des Fachblatts "Proceedings of the National Academy of Sciences of the USA" zeigen die Wissenschaftler, wie sich aus chaotischen Mischungen von organi-schen Molekülen hoch geordnete Strukturen formieren. Erstmals konnten dabei Schlüsselmechanismen wie Selbsterkennung, aktive Selektion und Fehlerkorrektur direkt und im Detail beobachtet werden. Dieser Einblick in die Prozesse der molekularen Selbstorganisation gibt wichtige Impulse für das Verständnis der biologischen Evolution. Darüber hinaus lässt er sich für das nanotechnologische Design gänzlich neuartiger Materialien und Komponenten nutzbar machen.


Schnappschuss der Evolution: Die mit modernster Tunnelmikroskopie erstellte Aufnahme zeigt die Selbstorganisation von nanometergroßen, molekularen Komponenten auf einer Kupferoberfläche - einmal als Simulation (im Hintergrund), einmal als experimentelles Abbild der Moleküle selbst (im Vordergrund). Deutlich erkennbar ist die größenabhängige Anordnung zweier Molekülarten (dunkel- und hellblau) in leiterartigen Teilstrukturen. Der Abstand zwischen den molekularen "Sprossen" beträgt ca. einen Nanometer (1 Milliardstel Meter). Bild: Forschungszentrum Karlsruhe und Max-Planck-Institut für Festkörperforschung Stuttgart

Das spontane Entstehen von Ordnung aus zufälligen Gemischen unbelebter, meist molekularer Bausteine heraus ist ein Schlüsselschritt in der Evolution biologischer Materialien. Gesteuert wird diese Selbstorganisation der Materie von den spezifischen Eigenschaften der nur wenige Nanometer großen Moleküle (1 Nanometer = 1 Milliardstel Meter). In der "Kommunikation" der Moleküle wirken diese Eigenschaften wie elementare Algorithmen, die, ähnlich wie in einem Computerprogramm, "ausgelesen" werden können. "Die Fähigkeit von Molekülen, sich über Schlüsselprozesse wie aktive Selektion, Selbsterkennung und Fehlerkorrektur zu hoch organisierten Strukturen zu ordnen, ist eine grundlegende Voraussetzung für die Bildung molekularer Systeme bis hin zu biologischen Organismen wie Zellen oder Membranen", sagt Klaus Kern, Direktor der Abteilung für Nanowissenschaft am Max-Planck-Institut für Festkörperforschung in Stuttgart.

Die Gruppe um Klaus Kern platzierte die Moleküle auf hochreinen Kupferoberflächen und erhitzte die Mischung, um die Beweglichkeit der Bausteine sicherzustellen. "Die Molekülbewegung auf der Oberfläche hat den Vorteil, dass wir die nanoskaligen molekularen Anordnungen mithilfe modernster, höchstempfindlicher Mikroskopieverfahren direkt wahrnehmen können", erläutert Alexander Langner vom Stuttgarter Max-Planck-Institut die Versuchsanordnung. Die Erzeugung derart winziger Anordnungen, die zum Teil 50 000-mal kleiner sind als ein Haar, ist keine einfache Aufgabe: "Mit konventionellen Verfahren wäre die Fertigung außerordentlich teuer und aufwändig gewesen", sagt sein Kollege Steven Tait. "Unsere Strategie besteht darin, von uns ’programmierte’ Bausteine zu verwenden, die sich dann in Eigenregie zu den gewünschten Strukturen anordnen."

Für die Planung dieses Selbstorganisationsprozesses war die Karlsruher Forschergruppe um Mario Ruben, Gruppenleiter am Institut für Nanotechnologie des Forschungszentrums Karlsruhe, verantwortlich. Durch gezieltes Design "programmierten" die Helmholtz-Wissenschaftler die Moleküle mit denjenigen Informationen, die im Selbstorganisationsprozess zum Zuge kommen sollten. "Eine gezielte, sich selbst organisierende Ordnung chaotischer Molekülgemische gelingt nur dann", so Mario Ruben, "wenn die in die Moleküle eingebauten Programme sorgfältig angelegt und überdies robust genug sind, um die Mechanismen der Selbstselektion, der Selbsterkennung und der aktiven Fehlerkorrektur in Gang zu setzen." Das in der Studie erfolgreich erprobte, der Natur abgeschaute Design von Molekülen gibt wichtige Impulse für das Verständnis der biologischen Evolution. Darüber hinaus eröffnet es vielversprechende Möglichkeiten einer programmierbaren Manipulation der Materie auf molekularer Ebene mitsamt der darauf aufbauenden Fertigung gänzlich neuartiger Materialien und Komponenten.

Die Online-Version der Studie von Alexander Langner, Steven Tait, Nian Lin, Klaus Kern (alle MPI für Festkörperforschung Stuttgart) sowie Chandrasekar Rajadurai und Mario Ruben (beide Forschungszentrum Karlsruhe) kann ab Dienstag, den 30. Oktober unter http://www.pnas.org/papbyrecent.shtml abgerufen werden.

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de
http://www.pnas.org/papbyrecent.shtml

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Der Klang des Ozeans
12.01.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Verstädterung wird 300.000 km2 fruchtbarsten Ackerlands verschlingen
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie