Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mechanismen der Großhirnfaltung aufgeklärt

27.03.2006


Die Faltung der Großhirnrinde beeinflusst nachhaltig die weitere Gehirnarchitektur: Aufgefaltete Regionen sind dicker (rot) als die Furchen der Hirnrinde (dünner, in grün), die erst bei einer simulierten "Entfaltung" des Großhirns (Abb. unten) sichtbar werden. Diese Dickenunterschiede werden vermutlich durch mechanische Kräfte während der Entwicklung des Gehirns verursacht.


Claus Hilgetag, Professor für Neurowissenschaften an der IUB, und seiner Kollegin Helen Barbas, Professorin für Gesundheitswissenschaften an der Boston University, gelang es, eine der ältesten Fragen der Hirnforschung zu beantworten: Wie entstehen die charakteristischen Windungen der Großhirnrinde von Primaten? Die Studie ist als Titelbeitrag in der aktuellen Ausgabe von PLoS Computational Biology ("Role of Mechanical Factors in the Morphology of the Primate Cerebral Cortex", Volume 2 | Issue 3 | MARCH 2006, http://www.ploscompbiol.org) veröffentlicht.

... mehr zu:
»Großhirnrinde

In ihrer Studie untersuchten die beiden Wissenschaftler die Struktur der gefalteten Primaten-Großhirnrinde sowie die Dichte und den Verlauf von Verbindungen zwischen verschiedenen Hirnregionen. Ihre neuen Einsichten basieren auf Claus Hilgetags Analyse umfangreicher quantitativer neuroanatomischer Daten, die während der vergangenen zwei Jahrzehnte im Labor von Helen Barbas erhoben wurden. Mit der Studie liegen erstmals systematische empirische Belege für die Hypothese vor, dass die charakteristische Faltung von Primatengehirnen vor allem durch mechanische Kräfte erzeugt wird. Diese Kräfte kommen durch Faserspannung zustande, welche von Nervenverbindungen zwischen unterschiedlichen Arealen der Hirnoberfläche ausgeübt wird. Gehirnregionen, die durch viele Nervenfasern miteinander verbunden sind, werden während der embryonalen und frühkindlichen Entwicklung des Gehirns zueinander gezogen und wölben sich zu Hügeln auf. Furchen entstehen dagegen in den weniger stark vernetzten Regionen zwischen den Hügeln, in welchen eine geringere Faserspannung herrscht.

Außerdem konnten die beiden Wissenschaftler demonstrieren, dass die Faltenbildung des Gehirns Einfluss auf die gesamte weitere Entwicklung der Gehirnarchitektur hat. So wird beispielsweise Nervenzellen bei ihrer Wanderung in verschiedene Hirnregionen während der vorgeburtlichen Entwicklung des Gehirns ein Reibungswiderstand entgegen gesetzt. Diese mechanischen Kräfte werden von der Art der lokalen Faltung beeinflusst, was wiederum Einfluss auf die Anzahl von Zellen und die Dicke der Großhirnrinde in den Hügeln und Furchen der Gehirn-Landschaft hat.


Die Ergebnisse der Studie legen nahe, dass pathologische Veränderungen in Lage und Gestalt von Gehirnwindungen, wie sie etwa bei Schizophrenie oder Autismus auftreten, durch Störungen während der Entwicklung der Nervenverbindungen zustande kommen. "Der von uns belegte Zusammenhang zwischen dem Layout von Nervenfasern und den charakteristischen Windungen der Großhirnrinde eröffnet neue, auf einfachen physikalischen Prinzipien beruhende Ansätze zum Verständnis der normalen und gestörten Entwicklung des Gehirns", kommentierte der IUB-Wissenschaftler Claus Hilgetag die Ergebnisse der Studie.

Fragen zur Studie beantwortet:
Claus C. Hilgetag, PhD.
Professor of Neuroscience
E-Mail: c.hilgetag@iu-bremen.de

Dr. Kristin Beck | idw
Weitere Informationen:
http://www.ploscompbiol.org
http://www.iu-bremen.de/

Weitere Berichte zu: Großhirnrinde

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Der Klang des Ozeans
12.01.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Verstädterung wird 300.000 km2 fruchtbarsten Ackerlands verschlingen
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau