Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zeta-Potenzial 2.0

30.03.2015

Olga Vinogradova, Gastprofessorin am DWI – Leibniz-Institut für Interaktive Materialien in Aachen, publiziert in der Zeitschrift ‚Physical Review Letter‘ eine neue Theorie zur Strömung von Fluiden entlang wasserabweisender Oberflächen unter Einwirkung eines elektrischen Feldes. Die Ergebnisse sind besonders relevant für den Bereich der Mikro- und Nanofluidik.

Wer eine herkömmliche Pumpe benutzt, um eine Flüssigkeit oder ein Gas durch eine extrem dünne Kapillare hindurch zu bewegen, stößt schnell an seine Grenzen: Je dünner die Kapillare, desto höher der benötigte Druck.


Schematische Darstellung eines Fluidstroms an einer hydrophoben Oberfläche. An der Oberfläche angelagerte Ionen können den Fluidstrom in Wandnähe zusätzlich beschleunigen oder auch abbremsen.

Bild: Olga Vinogradova

Der Energieaufwand für feinste Kapillaren wäre immens. Stattdessen machen sich Experten einen Kniff zu Nutze: Ersetzt man die Pumpe durch ein parallel zur Kapillare angelegtes elektrisches Feld, ist es möglich, mit geringem Aufwand einen sogenannten elektroosmotischen Fluss zu erzeugen.

Er beruht auf einer Doppelschicht aus Ionen, die sich an der Innenwand der Kapillare ausbildet. Die in der Kapillare enthaltene Flüssigkeit bzw. das enthaltene Gas ist dann nicht mehr elektrisch neutral und kann durch ein elektrisches Feld bewegt werden.

Im Jahr 1909 gelang es dem polnischen Physiker Marian Smoluchowski, die Strömungsgeschwindigkeit in einem solchen Aufbau zu beschreiben. Jetzt, gut 100 Jahre später, wird deutlich, dass die Smoluchowski-Gleichung nur für ganz spezielle Bedingungen eine exakte Vorhersage treffen kann: Für hydrophile Kapillarwände, bei denen der Kontaktwinkel gegenüber Wasser kleiner als 90 Grad ist.

Ganz andere Bedingungen herrschen an wasserabweisenden (hydrophoben) Oberflächen, an die sich aber ebenfalls Ionen anlagern können. Olga Vinogradova erklärt: „Um auch hier genaue Berechnungen zu ermöglichen, haben wir die Gleichung angepasst. Zwei Phänomene spielten dabei eine Rolle: Das war einerseits eine Gleitbewegung (‚Slippage‘), welche die Geschwindigkeit der Fluidströme deutlich erhöht.

Andererseits wollten wir das Verhalten von an die Kapillarwand angelagerten Ionen berücksichtigen. Versetzt das elektrische Feld auch diese Ionen in Bewegung, können sie den Fluidstrom in Wandnähe zusätzlich beschleunigen oder auch abbremsen. Unsere theoretischen Überlegungen haben wir anschließend durch Simulationsexperimente belegen können.“

Hauptakteur in der Smoluchowski-Gleichung ist das sogenannte Zeta-Potenzial. Dieser Parameter spiegelt die elektrokinetische Mobilität eines Partikels wieder. Je höher das Zeta-Potenzial, desto schneller bewegt sich ein Partikel oder ein Fluid in einem elektrischen Feld.

Für hydrophobe Oberflächen schlägt Olga Vinogradova in ihrer Publikation eine angepasste Interpretation des Zeta-Potenzials vor, die neben der Beweglichkeit von Oberflächenladungen auch den erwähnten Gleiteffekt einbezieht.

Das Zeta-Potenzial spielt in vielen technologischen und wissenschaftlichen Bereichen eine Rolle, beispielsweise in der Medizin, der Abwasserbehandlung und der Bodenreinigung. Darüber hinaus ist es wichtig für mikro- und nanofluidische Anwendungen. Ein Beispiel ist die Minidiagnostik in Form von Chip-Laboren, wie sie heutzutage bereits für den Nachweis und die Trennung von Biomolekülen genutzt werden.

Olga I. Vinogradova ist Professorin an der M.V. Lomonosov Moscow State University und am A.N. Frumkin Institute für Physikalische Chemie und Elektrochemie der Russischen Akademie der Wissenschaften. Mit ihren Kenntnissen besonders im Bereich der theoretischen Physik und Simulationsmethoden verstärkt sie das DWI-Team seit 2007 mit einer Gastprofessur. Ein Teil der beschriebenen Arbeiten wurde im Rahmen des Sonderforschungsbereichs 985 ‚Functional Microgels and Microgel Systems’ durchgeführt.

Publikation:
S. R. Maduar, A. V. Belyaev, V. Lobaskin, and O. I. Vinogradova
Phys. Rev. Lett. 114, 118301 – Published 19 March 2015
http://dx.doi.org/10.1103/PhysRevLett.114.118301

Dr. Janine Hillmer | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: DWI Druck Flüssigkeit Gas Ionen Kapillare Oberflächen Physik Physiker Publikation Pumpe elektrisches Feld

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie