Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Yin und Yang der modernen Festkörperphysik

24.02.2015

Seltsame Verhältnisse herrschen in topologischen Isolatoren: Während sie in ihrem Inneren Isolatoren sind, leitet ihre Oberfläche den elektrischen Strom. In das komplizierte Wechselspiel zwischen Oberfläche und Volumen haben Physiker der Universität Würzburg jetzt neue Einblicke gewonnen.

Mit unseren Sinnen nehmen wir von einem Körper vor allem seine Oberfläche wahr: Sie bestimmt, wie der Körper aussieht und wie er sich anfühlt. Die Oberfläche ist untrennbar von dem Inneren, das sie umschließt; sie bestimmt Form und Gestalt eines Körpers, seine „Topologie“.


Schema der elektronischen Struktur von Oberfläche und Volumen eines topologischen Isolators.

Grafik: Christoph Seibel

Trotz dieser unmittelbaren Korrespondenz sind in der Welt der Physik Oberfläche und Volumen grundlegend unterschiedliche Dinge, was sich zum Beispiel in den physikalischen Eigenschaften zeigt. Besonders im Fall der topologischen Isolatoren wird dies deutlich.

Detaillierter Einblick in topologische Isolatoren

Topologische Isolatoren repräsentieren eine neuartige exotische Materialklasse, die derzeit die physikalische Fachwelt in Atem hält. Grund hierfür sind die ungewöhnlichen elektronischen Eigenschaften der Oberflächen dieser Materialien, die in ihrem Inneren eigentlich Isolatoren sind.

Einem Team unter der Leitung von Dr. Hendrik Bentmann am Lehrstuhl für Experimentelle Physik VII an der Universität Würzburg ist es nun gelungen, durch spektroskopische Experimente einen außergewöhnlich detaillierten Einblick in das Wechselspiel zwischen Oberfläche und Volumen in diesen topologischen Isolatoren zu gewinnen.

Ihre Ergebnisse, die auf einer internationalen Kooperation mit Forschern von der Ludwig-Maximilians-Universität München und den Universitäten Chiba und Hiroshima in Japan beruhen, stellen die Wissenschaftler in der Zeitschrift „Physical Review Letters“ vor.

Außergewöhnliches Verhalten der Elektronen

„In topologischen Isolatoren ist die Bewegungsrichtung der Elektronen entlang der Oberfläche mit der Orientierung ihres Spins verknüpft“, erklärt Hendrik Bentmann. Hieraus resultieren neben neuartigen physikalischen Effekten prinzipiell auch interessante Anwendungsmöglichkeiten für leistungsfähigere elektronische Bauelemente.

„Die elektronischen Eigenschaften von Oberfläche und Volumen eines topologischen Isolators spiegeln einander wider – sie korrespondieren – und sind doch völlig unterschiedlich“, schildert Bentmann die besonderen Eigenschaften dieser Materialklasse. Im elektrischen Transport – dort, wo Elektronen wandern – sind die jeweiligen Beiträge von Oberfläche und Volumen jedoch oft nicht einfach auseinanderzuhalten.

Oberfläche und Volumen sind schwer voneinander zu trennen

Der Arbeitsgruppe von Hendrik Bentmann und Professor Friedrich Reinert, Inhaber des Lehrstuhls für Experimentelle Physik VII, ist dies jetzt gelungen. Für ihre Untersuchungen nutzten die Wissenschaftler die sogenannte Photoelektronenspektroskopie, die es erlaubt, elektronische Eigenschaften von Festkörpern sehr direkt zu vermessen. Ihre Messungen haben sie an dem topologischen Isolator Antimontellurid vorgenommen, einem Vertreter der sogenannten V2VI3-Verbindungen.

Mit Hilfe von Präzisionsmessungen mit höchster Auflösung konnten die Wissenschaftler Details der spektralen Signaturen von Oberfläche und Volumen voneinander trennen. Unterstützt wurden die experimentellen Resultate durch theoretische Simulationen der Kooperationspartner von der LMU.

„Unsere Experimente zeigen unter anderem, dass sowohl die Geschwindigkeit, mit sich der sich die Elektronen entlang der Oberfläche bewegen, als auch ihre Streueigenschaften durch Wechselwirkung mit dem Volumen verändert werden können“ erklärt Bentmann. Die neuen Erkenntnisse liefern einen wichtigen Beitrag zum grundlegenden Verständnis der Oberflächenelektronen in topologischen Isolatoren.

Die Untersuchungen fanden im Rahmen der Würzburger DFG-Forschergruppe 1162 statt, die sich in ihrer zweiten Förderperiode der Erforschung von spinabhängigen Quanteneffekten an Oberflächen und Grenzflächen widmet. Die Ergebnisse bilden eine wichtige Grundlage für weiterführende Experimente an topologischen Isolatoren, die die Arbeitsgruppe für den kürzlich beantragten und evaluierten Sonderforschungsbereich 1170 „Topological and Correlated Electronics at Surfaces and Interfaces“ (ToCotronics) plant.

Connection of a topological surface state with the bulk continuum in Sb2Te3(0001), Christoph Seibel, Hendrik Bentmann, Jürgen Braun, Jan Minár, Henriette Maaß, Kazuyuki Sakamoto, Masashi Arita, Kenya Shimada, Hubert Ebert, and Friedrich Reinert, Phys. Rev. Lett. 114, 066802 (2015).
DOI: 10.1103/PhysRevLett.114.066802

Kontakt

Dr. Hendrik Bentmann, Lehrstuhl für Experimentelle Physik VII, T: (0931) 31-82434, hendrik.bentmann@physik.uni-wuerzburg.de

Weitere Informationen:

http://www.uni-wuerzburg.de Website der Uni Würzburg
http://www.presse.uni-wuerzburg.de Kontakt zur Pressestelle der Uni Würzburg

Marco Bosch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie