Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Yin und Yang der modernen Festkörperphysik

24.02.2015

Seltsame Verhältnisse herrschen in topologischen Isolatoren: Während sie in ihrem Inneren Isolatoren sind, leitet ihre Oberfläche den elektrischen Strom. In das komplizierte Wechselspiel zwischen Oberfläche und Volumen haben Physiker der Universität Würzburg jetzt neue Einblicke gewonnen.

Mit unseren Sinnen nehmen wir von einem Körper vor allem seine Oberfläche wahr: Sie bestimmt, wie der Körper aussieht und wie er sich anfühlt. Die Oberfläche ist untrennbar von dem Inneren, das sie umschließt; sie bestimmt Form und Gestalt eines Körpers, seine „Topologie“.


Schema der elektronischen Struktur von Oberfläche und Volumen eines topologischen Isolators.

Grafik: Christoph Seibel

Trotz dieser unmittelbaren Korrespondenz sind in der Welt der Physik Oberfläche und Volumen grundlegend unterschiedliche Dinge, was sich zum Beispiel in den physikalischen Eigenschaften zeigt. Besonders im Fall der topologischen Isolatoren wird dies deutlich.

Detaillierter Einblick in topologische Isolatoren

Topologische Isolatoren repräsentieren eine neuartige exotische Materialklasse, die derzeit die physikalische Fachwelt in Atem hält. Grund hierfür sind die ungewöhnlichen elektronischen Eigenschaften der Oberflächen dieser Materialien, die in ihrem Inneren eigentlich Isolatoren sind.

Einem Team unter der Leitung von Dr. Hendrik Bentmann am Lehrstuhl für Experimentelle Physik VII an der Universität Würzburg ist es nun gelungen, durch spektroskopische Experimente einen außergewöhnlich detaillierten Einblick in das Wechselspiel zwischen Oberfläche und Volumen in diesen topologischen Isolatoren zu gewinnen.

Ihre Ergebnisse, die auf einer internationalen Kooperation mit Forschern von der Ludwig-Maximilians-Universität München und den Universitäten Chiba und Hiroshima in Japan beruhen, stellen die Wissenschaftler in der Zeitschrift „Physical Review Letters“ vor.

Außergewöhnliches Verhalten der Elektronen

„In topologischen Isolatoren ist die Bewegungsrichtung der Elektronen entlang der Oberfläche mit der Orientierung ihres Spins verknüpft“, erklärt Hendrik Bentmann. Hieraus resultieren neben neuartigen physikalischen Effekten prinzipiell auch interessante Anwendungsmöglichkeiten für leistungsfähigere elektronische Bauelemente.

„Die elektronischen Eigenschaften von Oberfläche und Volumen eines topologischen Isolators spiegeln einander wider – sie korrespondieren – und sind doch völlig unterschiedlich“, schildert Bentmann die besonderen Eigenschaften dieser Materialklasse. Im elektrischen Transport – dort, wo Elektronen wandern – sind die jeweiligen Beiträge von Oberfläche und Volumen jedoch oft nicht einfach auseinanderzuhalten.

Oberfläche und Volumen sind schwer voneinander zu trennen

Der Arbeitsgruppe von Hendrik Bentmann und Professor Friedrich Reinert, Inhaber des Lehrstuhls für Experimentelle Physik VII, ist dies jetzt gelungen. Für ihre Untersuchungen nutzten die Wissenschaftler die sogenannte Photoelektronenspektroskopie, die es erlaubt, elektronische Eigenschaften von Festkörpern sehr direkt zu vermessen. Ihre Messungen haben sie an dem topologischen Isolator Antimontellurid vorgenommen, einem Vertreter der sogenannten V2VI3-Verbindungen.

Mit Hilfe von Präzisionsmessungen mit höchster Auflösung konnten die Wissenschaftler Details der spektralen Signaturen von Oberfläche und Volumen voneinander trennen. Unterstützt wurden die experimentellen Resultate durch theoretische Simulationen der Kooperationspartner von der LMU.

„Unsere Experimente zeigen unter anderem, dass sowohl die Geschwindigkeit, mit sich der sich die Elektronen entlang der Oberfläche bewegen, als auch ihre Streueigenschaften durch Wechselwirkung mit dem Volumen verändert werden können“ erklärt Bentmann. Die neuen Erkenntnisse liefern einen wichtigen Beitrag zum grundlegenden Verständnis der Oberflächenelektronen in topologischen Isolatoren.

Die Untersuchungen fanden im Rahmen der Würzburger DFG-Forschergruppe 1162 statt, die sich in ihrer zweiten Förderperiode der Erforschung von spinabhängigen Quanteneffekten an Oberflächen und Grenzflächen widmet. Die Ergebnisse bilden eine wichtige Grundlage für weiterführende Experimente an topologischen Isolatoren, die die Arbeitsgruppe für den kürzlich beantragten und evaluierten Sonderforschungsbereich 1170 „Topological and Correlated Electronics at Surfaces and Interfaces“ (ToCotronics) plant.

Connection of a topological surface state with the bulk continuum in Sb2Te3(0001), Christoph Seibel, Hendrik Bentmann, Jürgen Braun, Jan Minár, Henriette Maaß, Kazuyuki Sakamoto, Masashi Arita, Kenya Shimada, Hubert Ebert, and Friedrich Reinert, Phys. Rev. Lett. 114, 066802 (2015).
DOI: 10.1103/PhysRevLett.114.066802

Kontakt

Dr. Hendrik Bentmann, Lehrstuhl für Experimentelle Physik VII, T: (0931) 31-82434, hendrik.bentmann@physik.uni-wuerzburg.de

Weitere Informationen:

http://www.uni-wuerzburg.de Website der Uni Würzburg
http://www.presse.uni-wuerzburg.de Kontakt zur Pressestelle der Uni Würzburg

Marco Bosch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten