Wissenschaftler der Martin-Luther-Universität Halle-Wittenberg (MLU) haben eine neue Methode konzipiert, um elektrische Ladung mit Licht kontrolliert anzutreiben. So genannte optische Wirbel, die aus Lichtstrahlen bestehen, fungieren dabei ähnlich wie ein Wasserrad und befördern Ladungsträger von einem Reservoir in die gewünschten elektrischen Leiterbahnen. Die Ergebnisse wurden soeben im Fachjournal "Scientific Reports" der Nature Publishing Group veröffentlicht.
Optische Wirbel gelten als eine der interessantesten Neuentwicklungen in der Optik, die für viele Anwendungen in Frage kommen, etwa in der Kommunikationstechnologie zur Übertragung von Daten.
In diesen optischen Wirbeln pflanzen sich die Wellen gedreht - ähnlich dem Prinzip eines Korkenziehers - fort. Die Anzahl der Windungen pro Wellengang ist einstellbar und legt fest, wie viel Drehmoment eine Ladung durch die Wechselwirkung mit dem Lichtwirbel erfährt.
Wie bei einem Wasserrad nehmen die Ladungsträger den Drehsinn des Wirbels auf und können somit gerichtet bewegt werden. Dieses neuartige Prinzip der Stromerzeugung ist nicht auf ein bestimmtes Material beschränkt, sondern ein generelles Phänomen und eröffnet somit neue Wege in der Optoelektronik.
Auf Basis dieses elektronischen Wasserradeffekts, der von den MLU-Forschern am Institut für Physik entdeckt wurde, lassen sich elektrooptische Bauelemente realisieren.
Im Rahmen seiner Doktorarbeit, die in die Publikation in "Scientific Reports" mündete, konnte Jonas Wätzel zeigen, wie Leiterbahnen an ringförmige Elektronenreservoirs gekoppelt und mit optischen Wirbeln angetrieben werden können.
Dabei wird die Ladung an die Ringwände geschleudert, dringt in die Leiterbahnen, vorzugsweise in die Richtung des Drehsinns, ein, so dass ein gerichteter Strom in die Leiterbahnen gepumpt wird. Der Effekt lässt sich durch Erhöhung der Windungszahl der Lichtwirbel noch verstärken.
Angaben zur Publikation:
Jonas Wätzel and Jamal Berakdar: Centrifugal photovoltaic and photogalvanic effects driven by structured light. Sci. Rep. 6, 21475; DOI: 10.1038/srep21475 (2016).
Abzurufen unter: http://www.nature.com/articles/srep21475
Manuela Bank-Zillmann | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-halle.de
Weitere Berichte zu: > Bauelemente > Elektronen > Kommunikationstechnologie > Ladungsträger > Licht > Lichtwirbel > Optik > Optoelektronik > Wechselwirkung > Wirbel
Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)
Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf
Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.
Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.
Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...
Anzeige
Anzeige
Internationale Konferenz zur Digitalisierung
19.04.2018 | Veranstaltungen
124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus
19.04.2018 | Veranstaltungen
DFG unterstützt Kongresse und Tagungen - Juni 2018
17.04.2018 | Veranstaltungen
Nachhaltige und innovative Lösungen
19.04.2018 | HANNOVER MESSE
Internationale Konferenz zur Digitalisierung
19.04.2018 | Veranstaltungsnachrichten
Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physik Astronomie