Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein winziger Sensor mit magnetischen Kraftfeldern könnte bald die medizinische Diagnostik revolutionieren

24.03.2010
Ein winziger Sensor, zu dem ferngesteuerte magnetisierte Nanoteilchen Biomoleküle schleppen, könnte schon bald die medizinische Diagnostik und die Biotechnologie revolutionieren.

Das Institut für Physik am Fachbereich Naturwissenschaften der Universität Kassel will noch dieses Jahr einen Prototyp bauen. Die Methode, mit Hilfe der Nanotechnologie Biomoleküle über magnetische Transporter zu einem Sensor zu transportieren, haben sich die Forscher schon patentieren lassen.

Schwere und häufig unheilbare Erkrankungen müssen möglichst früh erkannt werden, um den Krankheitsverlauf positiv beeinflussen und das Leben des Patienten verlängern zu können. Bei Alzheimer, der mit etwa 600000 Krankheitsfällen in Deutschland häufigsten Demenzerkrankung, wird der Nachweis heute mit einer relativ aufwändigen Untersuchung der Rückenmarksflüssigkeit geführt. Ein neues Sensorkonzept, an dem am Institut für Physik gearbeitet wird, könnte langfristig die Chance eröffnen, diese Diagnose mit der Analyse von normalem Blut durchzuführen, sagt Professor Dr. Arno Ehresmann, Arbeitsgruppenleiter am Institut für Physik und Mitglied des Kasseler Nanowissenschaftenzentrums CINSaT.

Damit Sensoren, die Alzheimer-Krankheit aus einer geringen Menge von Körperflüssigkeit nachweisen können, müssen diese viel genauer als bisher arbeiten. Das Mengenverhältnis bestimmter Proteine im Organismus des Patienten "verrät" die Erkrankung, jedoch enthält Blut nur eine geringe freie Mengen dieser Proteine. Es ist daher mehr oder minder zufällig, ob und wie viele dieser Proteine die Sensoroberfläche erreichen.

An diesem Punkt setzt die Forschung der Kasseler Wissenschaftler an. Sie wollen zunächst die Biomoleküle aus der zu untersuchenden Flüssigkeit mit Hilfe von magnetisierten Nanoteilchen, deren Oberfläche mit Fängermolekülen bedeckt ist, fangen. Dazu werden diese über wandernde magnetische Kraftfelder durch die Flüssigkeit gezogen und sorgen damit für eine Verwirbelung der Moleküle. Das wirkt gewissermaßen wie ein "Quirl", veranschaulicht Professor Ehresmann den Prozess.

Die Nanoteilchen mit den eingefangenen Biomolekülen werden dann mit den gleichen wandernden Kraftfeldern zu einem Sensor gezogen, der die magnetischen Teilchen erkennt. Die wandernden Kraftfelder werden in horizontal gestapelten nanometerdünnen Schichten aus ebenfalls teilweise magnetisiertem Material erzeugt. Eine schwierige Hürde bei dieser Architektur haben die Kasseler Wissenschaftler bereits überwunden: Die Physikerin Dr. Tanja Weis, bis vor kurzem Mitarbeiterin des Forscherteams, hat herausgefunden, wie eine Verklumpung der Nanoteilchen, die sich normalerweise in der Untersuchungsflüssigkeit gegenseitig anziehen, verhindert werden kann. Dr. Weis hat für diese Entdeckung kürzlich den mit 2000 Euro dotierten Dissertationspreis des Vereins Deutscher Ingenieure (VDI) erhalten.

Neben einem Einsatz in der Diagnostik kann sich Professor Ehresmann auch die Verwendung des neuartigen Partikeltransportkonzepts in der chemischen Industrie vorstellen. Es könne dort beispielsweise Kosten sparen, weil bei teuren Analysen Material gespart wird.

Bei ihrer Forschung arbeiten die Kasseler Wissenschaftler eng mit ihren Kollegen von der Universität Bielefeld und innerhalb der Universität Kassel mit Kollegen aus der Biochemie zusammen. Professor Dr. Ehresmann ist optimistisch, dass er auch weitere Gelder für das Forschungsprojekt erhält. Man habe sich um eine Förderung aus der Exzellenz-Initiative "Loewe" des Landes Hessen beworben und die erste Bewerbungsrunde erfolgreich überstanden. Kommt das Institut zum Zuge, so wären die nächsten fünf Forschungsjahre mit schätzungsweise 350000 Euro an Personalmitteln finanziell gesichert. Die bisherige Forschung wurde ausschließlich aus universitätseigenen Mitteln finanziert.

Info
Prof. Dr. Arno Ehresmann
tel: (0561) 804 4060
fax: (0561) 804 4150
e-mail ehresmann@physik.uni-kassel.de
Universität Kassel
Fachbereich Naturwissenschaften

Christine Mandel | idw
Weitere Informationen:
http://www.uni-kassel.de

Weitere Berichte zu: Alzheimer Biomolekül Diagnostik Flüssigkeit Kraftfelder Nanoteilchen Protein Sensor

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops