Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wiener Physiker drehen Lichtstrahlen

30.03.2011
Lichtwellen gezielt rotieren – dieses Kunststück gelang an der Technischen Universität (TU) Wien mit Hilfe einer ultradünnen Halbleiterschicht. Damit lässt sich ein Transistor bauen, der mit Licht statt elektrischem Strom funktioniert.

Lichtwellen können in unterschiedliche Richtungen schwingen – ähnlich wie eine gespannte Saite, die von oben nach unten oder auch von links nach rechts schwingen kann, je nachdem, wie man sie anzupft. Man spricht dabei von der Polarisationsrichtung des Lichtes.


Das Magnetfeld in der dünnen Platte dreht die Lichtwellen. F. Aigner / TU Wien

Physiker an der TU Wien haben gemeinsam mit einer Forschungsgruppe der Universität Würzburg nun eine Methode entwickelt, die Schwingungsrichtung von Licht mit einer ultradünnen Halbleiterschicht gezielt zu kontrollieren und beliebig zu drehen. Für die weitere Erforschung von Licht und seiner Polarisation ist das ein wichtiger Schritt nach vorn – und vielleicht öffnet dieser Durchbruch auch Möglichkeiten für ganz neuartige Computertechnik: Das Experiment entspricht der logischen Schaltung eines Transistors. Die Resultate der Experimente dazu wurden nun im angesehenen Journal „Physical Review Letters“ veröffentlicht.

Magnetfeld steuert das Licht

Die Polarisationsrichtung von Licht kann sich ändern, wenn man es in einem starken Magnetfeld durch bestimmte Materialien schickt – dieses Phänomen ist als „Faraday-Effekt“ bekannt. „Bei allen bisher dafür bekannten Materialien war dieser Effekt allerdings recht schwach“, erklärt Prof. Andrei Pimenov, der die Forschungen gemeinsam mit seinem Assistenten Alexey Shuvaev durchführte. Durch die Verwendung von Licht des richtigen Wellenlängenbereiches und mit Hilfe von extrem sauberen Halbleitern aus Quecklisber-Tellurid konnte in Wien und in Würzburg allerdings ein um Größenordnungen stärkerer Effekt erzielt werden: Damit lassen sich nun Lichtwellen in beliebige Richtungen drehen – man kann die Schwingungsrichtung durch die Stärke des äußeren Magnetfeldes präzise steuern. Erstaunlicherweise reichen dafür ultradünne Halbleiterschichten von weniger als einem Tausendstel Millimeter Dicke aus. „Mit anderen Materialien dieser Dicke könnte man die Polarisationsrichtung des Lichtes höchstens um Bruchteile eines Grades verändern“, meint Prof. Pimenov. Schickt man den Lichtstrahl danach durch einen Polarisationsfilter, der nur Licht einer bestimmten Schwingungsrichtung durchlässt, so kann man durch Drehung der Polarisation gezielt steuern, ob das Licht durchgelassen werden soll oder nicht.

Der Schlüssel zu diesem erstaunlichen Effekt liegt in den Elektronen des Halbleiters: Der Lichtstrahl versetzt die Elektronen in Schwingung, das zusätzlich angelegte Magnetfeld lenkt sie während des Schwingens ab. Diese komplizierte Elektronenbewegung beeinflusst nun ihrerseits den Lichtstrahl und verändert die Polarisationsrichtung.

Optischer Transistor

Bei dem Experiment wurde eine Schicht aus dem Halbleiter Quecksilber-Tellurid mit Licht im Infrarotbereich bestrahlt. „Das Licht hat eine Frequenz im Terahertz-Bereich - das sind die Frequenzen, die vielleicht die übernächste Generation von Computern erreichen wird“, meint Prof. Pimenov. „Seit Jahren erhöht sich die Taktfrequenz von Computern kaum noch, weil man eben in einen Bereich vorgedrungen ist, in dem die Materialeigenschaften nicht mehr problemlos mitspielen.“ Eine mögliche Lösung wäre, elektronische Schaltungen durch optische Elemente zu ergänzen. Bei einem Transistor, dem Grundelement der Elektronik, wird ein elektrischer Stromfluss abhängig von einem zusätzlichen Eingangssignal gesteuert. Beim Experiment an der TU Wien wird ein Lichtstrahl durch ein äußeres Magnetfeld gesteuert – die beiden Systeme sind einander sehr ähnlich. „Man könnte unser System als einen Licht-Transistor bezeichnen“, schlägt Pimenov vor.

Bevor allerdings an optische Computerschaltungen zu denken ist, wird sich der neu entdeckte Effekt in jedem Fall als sehr nützliches Forschungswerkzeug erweisen: In optischen Labors wird er in Zukunft sicher eine wichtige Rolle bei der Untersuchung von Materialien und der Physik des Lichtes spielen.

Originalpublikation:
Giant Magneto-Optical Faraday Effect in HgTe Thin Films in the Terahertz Spectral Range
Phys. Rev. Lett. 106, 107404 (2011)

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Umfangreiche Fördermaßnahmen für Forschung an Chromatin, Nebenniere und Krebstherapie

28.06.2017 | Förderungen Preise

Immunabwehr: Wie Proteine Membranbläschen zusammenbringen

28.06.2017 | Biowissenschaften Chemie

Das Auto lernt vorauszudenken

28.06.2017 | Maschinenbau