Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wiener Physiker drehen Lichtstrahlen

30.03.2011
Lichtwellen gezielt rotieren – dieses Kunststück gelang an der Technischen Universität (TU) Wien mit Hilfe einer ultradünnen Halbleiterschicht. Damit lässt sich ein Transistor bauen, der mit Licht statt elektrischem Strom funktioniert.

Lichtwellen können in unterschiedliche Richtungen schwingen – ähnlich wie eine gespannte Saite, die von oben nach unten oder auch von links nach rechts schwingen kann, je nachdem, wie man sie anzupft. Man spricht dabei von der Polarisationsrichtung des Lichtes.


Das Magnetfeld in der dünnen Platte dreht die Lichtwellen. F. Aigner / TU Wien

Physiker an der TU Wien haben gemeinsam mit einer Forschungsgruppe der Universität Würzburg nun eine Methode entwickelt, die Schwingungsrichtung von Licht mit einer ultradünnen Halbleiterschicht gezielt zu kontrollieren und beliebig zu drehen. Für die weitere Erforschung von Licht und seiner Polarisation ist das ein wichtiger Schritt nach vorn – und vielleicht öffnet dieser Durchbruch auch Möglichkeiten für ganz neuartige Computertechnik: Das Experiment entspricht der logischen Schaltung eines Transistors. Die Resultate der Experimente dazu wurden nun im angesehenen Journal „Physical Review Letters“ veröffentlicht.

Magnetfeld steuert das Licht

Die Polarisationsrichtung von Licht kann sich ändern, wenn man es in einem starken Magnetfeld durch bestimmte Materialien schickt – dieses Phänomen ist als „Faraday-Effekt“ bekannt. „Bei allen bisher dafür bekannten Materialien war dieser Effekt allerdings recht schwach“, erklärt Prof. Andrei Pimenov, der die Forschungen gemeinsam mit seinem Assistenten Alexey Shuvaev durchführte. Durch die Verwendung von Licht des richtigen Wellenlängenbereiches und mit Hilfe von extrem sauberen Halbleitern aus Quecklisber-Tellurid konnte in Wien und in Würzburg allerdings ein um Größenordnungen stärkerer Effekt erzielt werden: Damit lassen sich nun Lichtwellen in beliebige Richtungen drehen – man kann die Schwingungsrichtung durch die Stärke des äußeren Magnetfeldes präzise steuern. Erstaunlicherweise reichen dafür ultradünne Halbleiterschichten von weniger als einem Tausendstel Millimeter Dicke aus. „Mit anderen Materialien dieser Dicke könnte man die Polarisationsrichtung des Lichtes höchstens um Bruchteile eines Grades verändern“, meint Prof. Pimenov. Schickt man den Lichtstrahl danach durch einen Polarisationsfilter, der nur Licht einer bestimmten Schwingungsrichtung durchlässt, so kann man durch Drehung der Polarisation gezielt steuern, ob das Licht durchgelassen werden soll oder nicht.

Der Schlüssel zu diesem erstaunlichen Effekt liegt in den Elektronen des Halbleiters: Der Lichtstrahl versetzt die Elektronen in Schwingung, das zusätzlich angelegte Magnetfeld lenkt sie während des Schwingens ab. Diese komplizierte Elektronenbewegung beeinflusst nun ihrerseits den Lichtstrahl und verändert die Polarisationsrichtung.

Optischer Transistor

Bei dem Experiment wurde eine Schicht aus dem Halbleiter Quecksilber-Tellurid mit Licht im Infrarotbereich bestrahlt. „Das Licht hat eine Frequenz im Terahertz-Bereich - das sind die Frequenzen, die vielleicht die übernächste Generation von Computern erreichen wird“, meint Prof. Pimenov. „Seit Jahren erhöht sich die Taktfrequenz von Computern kaum noch, weil man eben in einen Bereich vorgedrungen ist, in dem die Materialeigenschaften nicht mehr problemlos mitspielen.“ Eine mögliche Lösung wäre, elektronische Schaltungen durch optische Elemente zu ergänzen. Bei einem Transistor, dem Grundelement der Elektronik, wird ein elektrischer Stromfluss abhängig von einem zusätzlichen Eingangssignal gesteuert. Beim Experiment an der TU Wien wird ein Lichtstrahl durch ein äußeres Magnetfeld gesteuert – die beiden Systeme sind einander sehr ähnlich. „Man könnte unser System als einen Licht-Transistor bezeichnen“, schlägt Pimenov vor.

Bevor allerdings an optische Computerschaltungen zu denken ist, wird sich der neu entdeckte Effekt in jedem Fall als sehr nützliches Forschungswerkzeug erweisen: In optischen Labors wird er in Zukunft sicher eine wichtige Rolle bei der Untersuchung von Materialien und der Physik des Lichtes spielen.

Originalpublikation:
Giant Magneto-Optical Faraday Effect in HgTe Thin Films in the Terahertz Spectral Range
Phys. Rev. Lett. 106, 107404 (2011)

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Durchbruch mit einer Kette aus Goldatomen
17.02.2017 | Universität Konstanz

nachricht Zukunftsmusik: Neues Funktionsprinzip zur Erzeugung der „Dritten Harmonischen“
17.02.2017 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Welt der keramischen Werkstoffe - 4. März 2017

20.02.2017 | Veranstaltungen

Schwerstverletzungen verstehen und heilen

20.02.2017 | Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovative Antikörper für die Tumortherapie

20.02.2017 | Medizin Gesundheit

Multikristalline Siliciumsolarzelle mit 21,9 % Wirkungsgrad – Weltrekord zurück am Fraunhofer ISE

20.02.2017 | Energie und Elektrotechnik

Wie Viren ihren Lebenszyklus mit begrenzten Mitteln effektiv sicherstellen

20.02.2017 | Biowissenschaften Chemie