Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie eine Spektrallinie entsteht

11.11.2016

Ultrakurze intensive Laserpulse schalten fundamentales Quantenphänomen

Zum ersten Mal konnten Physiker in Echtzeit beobachten, wie eine atomare Spektrallinie in der unglaublich kurzen Zeitspanne von einigen Femtosekunden entsteht, und damit eine theoretische Vorhersage bestätigen.


Absorption in Helium in Abhängigkeit von der Photonenenergie des anregenden extrem-ultravioletten Lichtblitzes und dem Zeitversatz zum ionisierenden nah-infraroten Laserpuls, der als Schalter wirkt.

Grafik: MPIK

Dazu verwendeten sie einen sehr schnellen zeitlichen Schalter: Ein intensiver Laserblitz unterbricht den natürlichen Zerfall kurz nach Anregung durch einen vorangehenden Laserblitz. Wie sich die asymmetrische Fano-Linienform von zwei quantenmechanisch interferierenden Elektronen im Heliumatom zeitlich aufbaut, verfolgten die Wissenschaftler, indem sie den Zeitversatz zwischen den beiden Laserpulsen variierten.

Im klassischen Bild können die Elektronen in einem Atom nur auf bestimmten Bahnen ihren Kern umkreisen – oder quantenmechanisch gesprochen bestimmte Orbitale bzw. Energieniveaus besetzen. Licht kann ein Elektron auf eine höhere Bahn heben (anregen), wenn seine Energie (Farbe) der Energiedifferenz der Orbitale entspricht.

Das Atom absorbiert also nur bestimmte Lichtfarben, sein Absorptions-Spektrum genannt. In den meisten Fällen haben die einzelnen Spektrallinien eine symmetrische Form; unter besonderen Bedingungen treten aber auch asymmetrische Linienformen auf, die als Fano-Profile bezeichnet werden.

Ein Beispiel dafür ist der Zerfall doppelt angeregten Heliums: Eines der beiden angeregten Elektronen fällt in den Grundzustand zurück, nachdem es mit dem anderen Elektron kollidiert ist, das dadurch aus dem Atom herausfliegt. Da das freie Elektron nicht mehr auf diskrete Energieniveaus beschränkt ist, sprechen die Physiker von der Kopplung eines diskreten Zustands an ein Kontinuum.

Dieses Phänomen tritt bei vielen verschiedenen Vorgängen in der Natur auf, insbesondere an der Grenze zwischen Quanten- (diskrete Energien) und klassischer (kontinuierliche Energien) Mechanik. Theoretische Rechnungen sagen vorher, dass sich das zugehörige Fano-Profil nicht sofort, sondern nach und nach, wenn auch extrem schnell, aufbaut: Das Entfalten der Linienform dauert in Helium einige Femtosekunden – einige Millionstel einer Milliardstel Sekunde.

Kürzlich gelang es Experimentalphysikern vom MPI für Kernphysik (MPIK) in Zusammenarbeit mit theoretischen Physikern der Technischen Universität Wien und der Kansas State University in den USA, eine Art Zeitlupen-Film vom Entstehen einer solchen Fano-Linie aufzunehmen. Die extrem kurzen Zeiten erreichten sie mit zwei ultrakurzen laserkontrollierten Lichtblitzen. Der erste im extremen Ultraviolett regt beide Elektronen des Heliumatoms an.

Einige Femtosekunden später löst der zweite, intensive Laserblitz im nahen Infrarot die Ionisation vorzeitig aus, d.h. er beschleunigt den natürlichen Zerfallsprozess stark. Alexander Blättermann, Postdoktorand in der Gruppe von Thomas Pfeifer am MPIK, veranschaulicht den Vorgang: „Man kann sich das angeregte Heliumatom als einen mit der Lichtfrequenz schwingenden Dipol (ein elektrisch geladenes Pendel) vorstellen, der die optische Absorptionslinie erzeugt.

Der nachfolgende starke Infrarotpuls wirkt als ultraschneller Lichtschalter und stoppt die Schwingung, bevor sich die Linie vollständig aufgebaut hat.“ Durch Variation des Zeitversatzes zwischen den beiden Laserpulsen – dies erfolgte mit einer Genauigkeit von unter einer Femtosekunde – verfolgten die Wissenschaftler das Entstehen der Linienform in Echtzeit.

„Die experimentellen Ergebnisse zeigen schön, wie sich das Fano-Profil mit zunehmendem Zeitversatz nach und nach aufbaut“, sagt Andreas Kaldun, der kürzlich vom MPIK zum SLAC in Stanford gewechselt ist. Bei sehr kurzen Zeitversätzen ist die Spektrallinie komplett zu einer breiten und flachen Bande verschmiert. Mit zunehmendem Zeitversatz bekommt der Dipol immer mehr Zeit zum Schwingen, wodurch die Linie schrittweise schmaler und steiler wird und sich schließlich dem ursprünglichen Fano-Profil annähert – in sehr guter Übereinstimmung mit der theoretischen Vorhersage.

„Unsere Ergebnisse bestätigen somit nicht nur die Vorhersage, sondern demonstrieren zugleich die Leistungsfähigkeit des verwendeten ultra-schnellen Lichtschalter-Prinzips für die Erforschung der Entstehung und des zeitlichen Ablaufs verschiedener fundamentaler Quantenprozesse, die bisher nur anhand ihrer statischen Absorptionsspektren untersucht werden konnten“, resümiert Thomas Pfeifer.

Das Studium solch fundamentaler atomarer Vorgänge mit verschiedenen experimentellen Methoden hat schon immer die Grundlagen der Physik vorangebracht (z.B. die Entdeckung der Quantenmechanik) und bleibt auch in der weltweiten Forschungslandschaft bis heute aktuell: In derselben Ausgabe des Science-Magazins erscheint eine Arbeit von französischen und spanischen Forschern, welche die komplementäre Methode der zeitaufgelösten Photoelektronen-Spektroskopie eingesetzt haben, um einen Blick „von außen“ auf die Fano-Resonanz des Atoms zu werfen (DOI: 10.1126/science.aah5188). Dies geschieht durch die zeitaufgelöste Rekonstruktion einer aus dem Atom herauslaufenden quantenmechanischen Elektronenwelle.

Zusammen mit dem oben beschriebenen Blick „von innen“ (DOI: 10.1126/science.aah6972) durch die zeitlich geschaltete Dipolschwingung, leistet die Atomphysik mit komplementären Methoden auch hier wieder einen wichtigen Beitrag zum Verständnis der Grundbausteine der Natur. Auf lange Sicht kann dies dann zu technologischen Anwendungen führen, z.B. der laserkontrollierten Chemie oder winzigen ultraschnellen Computern, wie in der Vergangenheit die Grundlagen der Quantenmechanik zu Lasern und Röntgenquellen führten.

Originalveröffentlichung:
Observing the ultrafast build-up of a Fano resonance in the time domain, A. Kaldun, A. Blättermann, V. Stooß, S. Donsa, H. Wei, R. Pazourek, S. Nagele, C. Ott, C. D. Lin, J. Burgdörfer, T. Pfeifer, Science, 11.11.2016, DOI: 10.1126/science.aah6972

Kontakt:
Prof. Dr. Thomas Pfeifer, MPI für Kernphysik
Tel.: +496221 516380
E-Mail: thomas.pfeifer@mpi-hd.mpg.de

Prof. Dr. Joachim Burgdörfer, Technische Universität Wien
Tel.: + 43 1 58801 136 10
E-Mail: joachim.burgdoerfer@tuwien.ac.at

Prof. Dr. Chii-Dong Lin, Kansas State University
Tel.: +1-785-532-1617
E-Mail: cdlin@phys.ksu.edu

Weitere Informationen:

http://www.mpi-hd.mpg.de/mpi/de/pfeifer/pfeifer-division-home/ Abteilung Pfeifer am MPIK
http://www.mpi-hd.mpg.de/mpi/de/aktuelles/meldung/detail/die-choreografie-eines-...

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Weitere Berichte zu: Atom Elektronen Femtosekunde Heliumatom Kernphysik Laserblitz MPI MPIK Quantenmechanik Spektrallinie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie