Wenn Nervenzellen Muster für erlerntes Wissen erkennen

Abtasten einer Wahrscheinlichkeitsverteilung von handgeschriebenen Zahlen durch ein stochastisches Netzwerk Mihai A. Petrovici

Bei Beobachtungen, die auf sogenannten Sinnesdaten beruhen, muss das menschliche Gehirn ständig überprüfen, welche „Version“ von Realität dieser Wahrnehmung zugrunde liegt. Dabei gewinnt es seine Antwort aus sogenannten Wahrscheinlichkeitsverteilungen, die im Netzwerk der Nervenzellen selbst gespeichert sind. Die Neurone können darin Muster erkennen, die erlerntes Wissen widerspiegeln.

Das belegen Untersuchungen mit Hilfe mathematischer Methoden, die Physiker der Universität Heidelberg gemeinsam mit Wissenschaftlern der Technischen Universität Graz durchgeführt haben. Die aktuellen Forschungsergebnisse sind von großer Bedeutung für die Entwicklung neuartiger Computersysteme. Sie wurden in der Fachzeitschrift „Physical Review“ veröffentlicht.

Eine der wichtigsten Funktionen unseres Gehirns ist es, ein internes Modell unserer Umgebung zu erschaffen. Dabei stehen ihm zwei Kategorien von Information zur Verfügung – das erlernte Wissen über bekannte Objekte und ein stetiger Strom von Sinnesdaten, die mit dem bereits vorhandenen Wissen abgeglichen werden und dieses kontinuierlich ergänzen. Diese Sinnesdaten sind die einfachsten Bausteine der Wahrnehmung, die damit „unmittelbar“ vorliegen.

Dennoch sind Beobachtungen, die auf Sinnesdaten beruhen, oftmals gleichzeitig mit mehreren „Realitäten“ kompatibel, wie das Phänomen der optischen Täuschungen eindrücklich beweist. Das Gehirn steht daher vor der Herausforderung, sich aller möglichen Versionen der zugrundeliegenden Wirklichkeit bewusst zu werden. Dabei springt es zwischen diesen Versionen der Realität hin und her – das Gehirn tastet eine Wahrscheinlichkeitsverteilung ab.

Die Wissenschaftler um den Heidelberger Physiker Prof. Dr. Karlheinz Meier haben diesen Prozess mit Hilfe formaler mathematischer Methoden auf dem Niveau einzelner Nervenzellen, sogenannter Neurone, untersucht. Das verwendete Modell einzelner Neurone ist dabei strikt deterministisch. Dies bedeutet, dass bei einer wiederholten Stimulation durch äußere Reize immer dasselbe Antwortverhalten hervorgerufen wird. Das Gehirn ist jedoch ein Netzwerk aus miteinander kommunizierenden Neuronen.

Wenn eine Nervenzelle stark genug von ihren Nachbarn angeregt wird, feuert sie einen kurzen elektrischen Puls ab und regt damit ihrerseits andere Neurone an. In einem großen Netzwerk aus aktiven Neuronen werden Nervenzellen dadurch stochastisch – ihre „Antwort“ ist nicht mehr bestimmt, also exakt vorhersagbar, sondern folgt statistischen Regeln der Wahrscheinlichkeit.

„Mit unseren Untersuchungen konnten wir zeigen, dass solche Neurone ihre Antwort aus Wahrscheinlichkeitsverteilungen gewinnen, die im Netzwerk selbst gespeichert sind und von den Nervenzellen abgetastet werden“, erläutert Prof. Meier. Auf diese Weise können Neurone beispielsweise Muster erkennen, die erlerntes Wissen widerspiegeln.

Die Forschungsarbeiten wurden im Rahmen des europäischen Human Brain Project durchgeführt, in dem die Heidelberger Wissenschaftler unter der Leitung von Karlheinz Meier neuartige Computersysteme nach dem Vorbild des Gehirns entwickeln.

„Das Konzept der statistischen Abtastung erlernter Wahrscheinlichkeiten eignet sich sehr gut für eine Umsetzung in einer neuen Architektur für Computer. Es stellt einen Schwerpunkt der aktuellen Forschung unserer Arbeitsgruppe dar“, so der Physiker, der am Kirchhoff-Institut für Physik der Universität Heidelberg lehrt und forscht.

Originalveröffentlichung:
M.A. Petrovici, J. Bill, I. Bytschok, J. Schemmel, and K. Meier: Stochastic inference with spiking neurons in the high-conductance state. Physical Review E 94, 042312 (published 20 October 2016), doi: 10.1103/PhysRevE.94.042312

Kontakt:
Dr. Mihai A. Petrovici
Kirchhoff-Institut für Physik
Telefon (06221) 54-9897
mpedro@kip.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

http://www.kip.uni-heidelberg.de/vision

Ansprechpartner für Medien

Marietta Fuhrmann-Koch idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Herz-Kreislauf-Erkrankungen: Neues Computermodell verbessert Therapie

Mithilfe mathematischer Bildverarbeitung haben Wissenschafter der Forschungskooperation BioTechMed-Graz einen Weg gefunden, digitale Zwillinge von menschlichen Herzen zu erstellen. Die Methode eröffnet völlig neue Möglichkeiten in der klinischen Diagnostik. Obwohl die…

Teamarbeit im Molekül

Chemiker der Universität Jena erschließen Synergieeffekt von Gallium. Sie haben eine Verbindung hergestellt, die durch zwei Gallium-Atome in der Lage ist, die Bindung zwischen Fluor und Kohlenstoff zu spalten. Gemeinsam…

Älteste Karbonate im Sonnensystem

Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde. Ein 2019 in Norddeutschland niedergegangener Meteorit enthält Karbonate, die zu den ältesten im Sonnensystem überhaupt zählen und zugleich einen Nachweis der…

Partner & Förderer

Indem Sie die Website weiterhin nutzen, stimmen Sie der Verwendung von Cookies zu. mehr Informationen

Die Cookie-Einstellungen auf dieser Website sind so eingestellt, dass sie "Cookies zulassen", um Ihnen das bestmögliche Surferlebnis zu bieten. Wenn Sie diese Website weiterhin nutzen, ohne Ihre Cookie-Einstellungen zu ändern, oder wenn Sie unten auf "Akzeptieren" klicken, erklären Sie sich damit einverstanden.

schließen