Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Atome in Nanomaterialien vibrieren

10.03.2016

Forscherinnen und Forscher um ETH-Professorin Vanessa Wood sind mittels umfangreichen Analysen den Gittervibrationen von Nanokristallen auf die Spur gekommen. Die Erkenntnisse helfen, nanostrukturierte Materialien systematisch und gezielt weiterzuentwickeln.

Materialien bestehen aus Atomen, die bei Raumtemperatur vibrieren. Diese kollektiven Gitterschwingungen, auch Phononen genannt, sind für Eigenschaften wie Wärme- und Ladungstransport verantwortlich. Gitterschwingungen in Metallen, Halbleitern und Isolatoren sind heute gut erforscht.


Die starken Gitterschwingungen in der Hülle von Nanokristallen sind für eine schlechtere Umwandlungseffizienz von Licht in elektrische Energie verantwortlich.

Grafik: Deniz Bozyigit / ETH Zürich

Bisher war allerdings unklar, wie sie sich in neuen, nanostrukturierten Materialien verhalten, von denen man sich bessere Displays, Sensoren, Batterien und katalytische Membranen verspricht.

Gitter schwingt stark an weichen Oberflächen

In einem aktuellen Fachartikel in der Zeitschrift «Nature» zeigen ETH-Professorin Vanessa Wood und ihr Team, wie sich Gitterschwingungen in Nanopartikeln verhalten und wie dieses Wissen systematisch für die gezielte Entwicklung von nanostrukturierten Materialien verwendet werden kann.

Bei Materialien mit einer Grösse von weniger als 10 bis 20 Nanometern – etwa 5000 mal dünner als ein menschliches Haar – sind Schwingungen von Oberflächenatomen besonders ausgeprägt und haben einen wichtigen Einfluss auf die Materialeigenschaften.

«Während in Bereichen wie der Katalyse, der Thermoelektrik oder der Supraleitung solch starke Schwingungen hilfreich sein können, ist der beobachtete Effekt für andere Anwendungen wie LEDs und Solarzellen unerwünscht», erklärt Wood.

Tatsächlich erklärt die Publikation, weshalb Solarzellen aus Nanopartikeln ihr Potential bislang noch nicht vollständig ausschöpfen konnten. Durch den Vergleich von Experiment und Simulation zeigt die Forschungsgruppe, wie die Interaktion von Gitterschwingungen an der Oberfläche mit Elektronen den Fotostrom in den Solarzellen verringert.

«Da wir nun zeigen konnten, dass Gitterschwingungen an der Oberfläche ausserordentlich wichtig sind, können wir systematisch Materialien entwickeln, die diese unterdrücken oder verstärken», so Wood.

Bessere Solarzellen

Woods Forschungsgruppe arbeitet schon seit längerem mit besonderen Nanomaterialien, den kolloidalen Nanokristallen. Diese Kristalle, die auch als Quantenpunkte bekannt sind, besitzen Halbleitereigenschaften und können kontrolliert mit einem Durchmesser von zwei bis zehn Nanometern synthetisiert werden.

Diese Materialien sind aufgrund ihrer optischen und elektrischen Eigenschaften interessant, die beide stark von der Partikelgrösse abhängen. Sie werden bereits heute kommerziell als rote und grüne Leuchtmittel in LED-Fernsehern genutzt und als kostengünstige Alternative für aus Lösungsmitteln abgeschiedene Solarzellen gehandelt. Forscher haben herausgefunden, dass wenn man eine Schale aus bestimmten Atomen um die Oberfläche der Nanokristalle legt, dann kann man die Leistung der Solarzelle verbessern.

Bisher war unklar, wieso dies funktioniert. Der in «Nature» publizierte Fachartikel erklärt nun, wie dies geschieht: Eine harte Schale von Atomen unterdrückt die Gitterschwingungen und deren Wechselwirkung mit Elektronen. Dies führt zu höheren Fotoströmen und effizienteren Solarzellen.

Ihre Untersuchungen führten die ETH-Forschenden an der Schweizer Spallationsneutronenquelle am Paul Scherrer Institut (PSI) durch. Beim Beschuss der Kristalle mit Neutronen beobachteten die Wissenschaftler die Struktur und die Vibration der Atome in diesen winzigen Festkörpern. Die Gitterschwingungen der Nanokristalle wurden auch mithilfe von Supercomputern am Nationalen Hochleistungsrechenzentrum (CSCS) in Lugano simuliert. «Ohne Zugang zu diesen Grossforschungsanlagen wäre diese Arbeit nicht möglich gewesen. In der Schweiz sind wir in der glücklichen Situation, solch einzigartige Einrichtungen zur Verfügung zu haben», betont die ETH-Professorin.

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/03/phonon-int...

Peter Rüegg | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ruckartige Bewegung schärft Röntgenpulse
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Drei Generationen an Sternen unter einem Dach
27.07.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise