Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wellennatur des Lichts in Super-Zeitlupe

11.07.2017

Physiker der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und der Friedrich-Schiller-Universität Jena (FSU) sind bei der Erforschung des Lichts in neue Größenordnungen vorgestoßen. Mit sehr hoher räumlicher und zeitlicher Auflösung haben sie das Verhalten extrem kurzer Laserpulse während der Fokussierung charakterisiert. Die Erkenntnisse sind von fundamentaler Bedeutung für die Wechselwirkung von Licht und Materie und ermöglichen eine bisher ungekannte Kontrolle von Elektronenbewegungen und chemischen Reaktionen. Von den Erkenntnissen der Grundlagenforscher können vor allem weitere Forschungen zu neuartigen Strahlungsquellen und Lichtwellenelektronik profitieren.

Ultrakurze Lichtpulse, die aus so breiten optischen Spektren bestehen, dass die Strahlen weiß aussehen, sind heute weit verbreitet. Sie werden unter anderem eingesetzt, um die Netzhaut des Auges zu untersuchen oder um physikalische Vorgänge auf atomarer Ebene zeitlich aufzulösen und zu steuern.


Die Grafik zeigt den Versuchsaufbau. Die FAU-Forscher haben Laserimpulse (rote Pfeile) auf eine nanometerscharfe Metallspitze fokussiert (Nanotip), so dass diese Elektronen emittiert. Diese Elektronen fungieren für die Wissenschaftler als Sonde für die genaue Form der Lichtwelle. (Grafik: Hoff/Krüger/FAU)

In fast allen dieser Anwendungen werden die weißen Laserpulse fokussiert. Da die genaue Form der Lichtwelle bestimmt, wie sich zum Beispiel Elektronen in ihr bewegen, ist es unabdingbar zu wissen, wie der fokussierte Laserstrahl genau aussieht.

Der Effekt lässt sich mit dem Bild eines Schiffes auf stürmischer See veranschaulichen. Für den Steuermann ist es nicht nur von Bedeutung, wie hoch und wie lang die Wellen sind, sondern er muss auch stets die eintreffende Welle im Auge behalten, um zu wissen, zu welchem Zeitpunkt sie auf das Schiff trifft, damit er sicher den Wellenberg hoch und auf der anderen Seite wieder hinunter steuern kann.

Genauso ist es für Wissenschaftler bei vielen Experimenten und Anwendungen wichtig zu wissen, wann und wo das Maximum der Lichtwelle etwa auf die Elektronen trifft, um sie gezielt beeinflussen zu können. Die Änderung und Ausbreitung der Wellen des elektrischen Feldes finden dabei auf der Zeitskala von einigen hundert Attosekunden statt – dem milliardsten Teil einer Milliardstelsekunde. Auf dieser Zeitskala konnte bisher die genaue Verteilung der Wellentäler und –berge nicht im Fokus eines Laserstrahls vermessen werden.

Den Erlanger und Jenaer Forschern ist dies nun gelungen: Sie fokussieren Laserpulse auf eine nanometerscharfe Metallspitze, wodurch Elektronen aus der Spitze emittiert werden. Diese Elektronen fungieren für die Wissenschaftler als Sonde für die genaue Form der Lichtwelle.

Dem Licht beim Reisen zugeschaut

Bereits vor fast 130 Jahren hat der französischen Physiker Louis Georges Gouy (1854 - 1926) mittels Interferenz eine Phasenverschiebung bei Fokussierung von einfarbigem Licht beobachtet und beschrieben. Dieser Effekt, nach seinem Entdecker als „Gouy-Phase“ benannt, wurde lange Zeit auch für weiße, also sehr viele Farben umfassende Laserspektren angenommen. Die Messungen der thüringisch-fränkischen Forschungskooperation haben diese Beschreibung erweitert, so dass jetzt auch bei kurzen Lichtpulsen kein Kapitän mehr von unerwartet auftauchenden Wellenbergen überrascht werden muss – um im Bild zu bleiben.


Die Forschungsergebnisse wurden unter dem Titel „Tracing the phase of focused broadband laser pulses“ in der Fachzeitschrift „Nature Physics“ veröffentlicht (doi: http://dx.doi.org/10.1038/nphys4185).

Weitere Informationen für die Medien:

Prof. Dr. Peter Hommelhoff
Lehrstuhl für Laserphysik
Department Physik
Friedrich-Alexander-Universität Erlangen-Nürnberg
Staudtstrasse 1
91052 Erlangen
www.laser.physik.fau.de
Tel.: 09131/85-27090
peter.hommelhoff@fau.de

Dominik Hoff, Prof. Dr. Gerhard G. Paulus
Institut für Optik und Quantenelektronik, Bereich Nichtlineare Optik
Friedrich Schiller Universität Jena
Max-Wien-Platz 1
07743 Jena
Tel.: 03641/947219
dominik.hoff@uni-jena.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fau.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften