Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weiche Kristalle fließen anders

08.08.2011
Eine Flüssigkeit muss kein ungeordnetes Gewirr von Teilchen sein

Ein Forschungsteam der Technischen Universität (TU) Wien und der Universität Wien entdeckt neuartige Strukturen aus winzigen Teilchen, die in Flüssigkeiten schweben. Teilchen-Cluster in Flüssigkeiten können unter mechanischer Belastung Stränge ausbilden und dadurch ihre Fließeigenschaften dramatisch ändern.


Kolloide - ungeordnet, in einer kristallartigen Struktur und als Fäden, unter mechanischer Belastung. F. Aigner / TU Wien

Was haben Blut, Tinte und Mehlsuppe gemeinsam? Sie alle sind Flüssigkeiten, in denen winzige Teilchen schweben - sogenannte „Kolloide“. In manchen dieser Flüssigkeiten finden sich die Teilchen zu Gruppen zusammen, die sich dann ganz von selbst regelmäßig anordnen, wie Atome in einem Kristall. Einer Forschungsgruppe der TU Wien und der Universität Wien gelang es nun, durch Computersimulationen erstaunliche Eigenschaften dieser kristallartigen Substanzen zu ergründen. Unter mechanischer Belastung kann sich die kristalline Ordnung in eine andere Struktur umwandeln oder sich komplett auflösen. Das Forschungsteam sieht ein breites technisches Anwendungsspektrum für diese Effekte. Die Ergebnisse der Berechnungen wurden nun im angesehenen Fachjournal „Physical Review Letters“ veröffentlicht.

Geordnete Struktur in Flüssigkeit

Lagern sich winzige Teilchen aneinander an, bezeichnet man sie als Cluster. Die Teilchen innerhalb eines Clusters können sich überlappen und durchdringen, ähnlich wie ein dichter Schwarm von Aalen, die eng verschlungen aneinander vorbeigleiten. Das Bemerkenswerte daran ist, dass sich diese Cluster nicht einfach an zufälligen Orten aufhalten, sondern ganz von selbst eine regelmäßige Struktur ausbilden – sogenannte „weiche Kristalle“. Der Abstand von einem Cluster unter bestimmten äußeren Bedingungen zum nächsten ist immer gleich. „Erhöht man die Teilchendichte, bekommt zwar jeder Cluster eine immer größere Anzahl von Teilchen ab, doch der Abstand zwischen den Clustern bleibt unverändert“, erklärt Arash Nikoubashman, Doktorand an der TU Wien. Er führte die Berechnungen im Rahmen seiner Dissertation mit Professor Gerhard Kahl am Institut für Theoretische Physik der TU Wien und mit Professor Christos Likos von der Universität Wien durch.Diese gemeinsamen wissenschaftlichen Arbeiten werden im Rahmen des von der EU finanzierten „Initial Training Networks“ COMPLOIDS realisiert.

Vom Kristallgitter zu langen Fäden

„Wir hatten schon aufgrund unserer früheren Ergebnisse die Vermutung, dass die Partikel unter äußeren Einflüssen unerwartete Eigenschaften zeigen können“, erzählen die Physiker – und die Hoffnungen des Forschungsteams wurden nicht enttäuscht: Am Computer konnte berechnet werden, wie sich die kristallartige Struktur unter einer mechanischen Belastung verhält, die eine Scherspannung bewirkt -also die Flächen innerhalb der Flüssigkeit gegeneinander verschiebt. Zunächst beginnt die Kristallstruktur zu schmelzen – die Bindungen zwischen den Clustern werden gebrochen. Aus diesen „abgeschmolzenen“ Teilchenclustern bildet sich dann aber spontan eine neue Ordnung: Lange, gerade Teilchenstränge entstehen, die sauber parallel zueinander angeordnet sind.

Von dünnflüssig zu dickflüssig

Während sich diese Stränge bilden wird die Substanz immer dünnflüssiger – ihre Zähigkeit (die Viskosität) nimmt ab. Das liegt daran, dass sich die parallelen Stränge relativ leicht gegeneinander verschieben können. Belastet man das Material dann noch stärker, brechen allerdings auch diese Stränge auseinander, es entsteht eine „geschmolzene“, also ungeordnete Ansammlung von Teilchenclustern – und die Zähigkeit der Substanz nimmt wieder zu: Immer mehr Teilchen werden aus ihren ursprünglichen Positionen gespült und bremsen so den Flüssigkeitsstrom ab. Dieses Verhalten gilt universell für alle Cluster-Kristalle, und mit einfachen theoretischen Überlegungen kann man die kritische Belastung, bei der die geordnete Struktur komplett geschmolzen ist, sehr genau vorhersagen.

Kristalle aus weichen, durchdringbaren Teilchen können unter Scher-Beanspruchung ganz neue Szenarien der Selbstorganisation aufzeigen. Geometrische Strukturen ergeben sich einfach durch die Art der Kräfte, die zwischen den Teilchen wirken. Diese Forschung an „weicher Materie“ im Nano- und Mikrometerbereich ist nicht nur für die Grundlagenforschung interessant, Materialien dieser Art spielen auch im Alltag eine wichtige Rolle. Zu ihnen zählen Blut oder große Biopolymere wie etwa DNA-Moleküle. Sie spielen in der Biotechnologie, aber auch in der Erdöl- und Pharmaindustrie eine wichtige Rolle – und überall dort, wo maßgeschneiderte Nanomaterialien benötigt werden. Eine Flüssigkeit, die unter äußeren Kräften ihre Zähigkeit ändert verspricht jedenfalls ein breites Spektrum an Anwendungsmöglichkeiten - von Stoßdämpfern über Flusssensoren bis hin zu Schutzkleidung.

Rückfragehinweis:
Arash Nikoubashman
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10
+43-1-58801-13631
arash.nikoubashman@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Berichte zu: Cluster Flüssigkeit Physik Stränge Teilchen Teilchenclustern Weiche Knochen Zähigkeit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden «Krebssignatur» in Proteinen

05.12.2016 | Biowissenschaften Chemie

Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt

05.12.2016 | Geowissenschaften

Frühwarnsignale für Seen halten nicht, was sie versprechen

05.12.2016 | Ökologie Umwelt- Naturschutz