Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weiche Kristalle fließen anders

08.08.2011
Eine Flüssigkeit muss kein ungeordnetes Gewirr von Teilchen sein

Ein Forschungsteam der Technischen Universität (TU) Wien und der Universität Wien entdeckt neuartige Strukturen aus winzigen Teilchen, die in Flüssigkeiten schweben. Teilchen-Cluster in Flüssigkeiten können unter mechanischer Belastung Stränge ausbilden und dadurch ihre Fließeigenschaften dramatisch ändern.


Kolloide - ungeordnet, in einer kristallartigen Struktur und als Fäden, unter mechanischer Belastung. F. Aigner / TU Wien

Was haben Blut, Tinte und Mehlsuppe gemeinsam? Sie alle sind Flüssigkeiten, in denen winzige Teilchen schweben - sogenannte „Kolloide“. In manchen dieser Flüssigkeiten finden sich die Teilchen zu Gruppen zusammen, die sich dann ganz von selbst regelmäßig anordnen, wie Atome in einem Kristall. Einer Forschungsgruppe der TU Wien und der Universität Wien gelang es nun, durch Computersimulationen erstaunliche Eigenschaften dieser kristallartigen Substanzen zu ergründen. Unter mechanischer Belastung kann sich die kristalline Ordnung in eine andere Struktur umwandeln oder sich komplett auflösen. Das Forschungsteam sieht ein breites technisches Anwendungsspektrum für diese Effekte. Die Ergebnisse der Berechnungen wurden nun im angesehenen Fachjournal „Physical Review Letters“ veröffentlicht.

Geordnete Struktur in Flüssigkeit

Lagern sich winzige Teilchen aneinander an, bezeichnet man sie als Cluster. Die Teilchen innerhalb eines Clusters können sich überlappen und durchdringen, ähnlich wie ein dichter Schwarm von Aalen, die eng verschlungen aneinander vorbeigleiten. Das Bemerkenswerte daran ist, dass sich diese Cluster nicht einfach an zufälligen Orten aufhalten, sondern ganz von selbst eine regelmäßige Struktur ausbilden – sogenannte „weiche Kristalle“. Der Abstand von einem Cluster unter bestimmten äußeren Bedingungen zum nächsten ist immer gleich. „Erhöht man die Teilchendichte, bekommt zwar jeder Cluster eine immer größere Anzahl von Teilchen ab, doch der Abstand zwischen den Clustern bleibt unverändert“, erklärt Arash Nikoubashman, Doktorand an der TU Wien. Er führte die Berechnungen im Rahmen seiner Dissertation mit Professor Gerhard Kahl am Institut für Theoretische Physik der TU Wien und mit Professor Christos Likos von der Universität Wien durch.Diese gemeinsamen wissenschaftlichen Arbeiten werden im Rahmen des von der EU finanzierten „Initial Training Networks“ COMPLOIDS realisiert.

Vom Kristallgitter zu langen Fäden

„Wir hatten schon aufgrund unserer früheren Ergebnisse die Vermutung, dass die Partikel unter äußeren Einflüssen unerwartete Eigenschaften zeigen können“, erzählen die Physiker – und die Hoffnungen des Forschungsteams wurden nicht enttäuscht: Am Computer konnte berechnet werden, wie sich die kristallartige Struktur unter einer mechanischen Belastung verhält, die eine Scherspannung bewirkt -also die Flächen innerhalb der Flüssigkeit gegeneinander verschiebt. Zunächst beginnt die Kristallstruktur zu schmelzen – die Bindungen zwischen den Clustern werden gebrochen. Aus diesen „abgeschmolzenen“ Teilchenclustern bildet sich dann aber spontan eine neue Ordnung: Lange, gerade Teilchenstränge entstehen, die sauber parallel zueinander angeordnet sind.

Von dünnflüssig zu dickflüssig

Während sich diese Stränge bilden wird die Substanz immer dünnflüssiger – ihre Zähigkeit (die Viskosität) nimmt ab. Das liegt daran, dass sich die parallelen Stränge relativ leicht gegeneinander verschieben können. Belastet man das Material dann noch stärker, brechen allerdings auch diese Stränge auseinander, es entsteht eine „geschmolzene“, also ungeordnete Ansammlung von Teilchenclustern – und die Zähigkeit der Substanz nimmt wieder zu: Immer mehr Teilchen werden aus ihren ursprünglichen Positionen gespült und bremsen so den Flüssigkeitsstrom ab. Dieses Verhalten gilt universell für alle Cluster-Kristalle, und mit einfachen theoretischen Überlegungen kann man die kritische Belastung, bei der die geordnete Struktur komplett geschmolzen ist, sehr genau vorhersagen.

Kristalle aus weichen, durchdringbaren Teilchen können unter Scher-Beanspruchung ganz neue Szenarien der Selbstorganisation aufzeigen. Geometrische Strukturen ergeben sich einfach durch die Art der Kräfte, die zwischen den Teilchen wirken. Diese Forschung an „weicher Materie“ im Nano- und Mikrometerbereich ist nicht nur für die Grundlagenforschung interessant, Materialien dieser Art spielen auch im Alltag eine wichtige Rolle. Zu ihnen zählen Blut oder große Biopolymere wie etwa DNA-Moleküle. Sie spielen in der Biotechnologie, aber auch in der Erdöl- und Pharmaindustrie eine wichtige Rolle – und überall dort, wo maßgeschneiderte Nanomaterialien benötigt werden. Eine Flüssigkeit, die unter äußeren Kräften ihre Zähigkeit ändert verspricht jedenfalls ein breites Spektrum an Anwendungsmöglichkeiten - von Stoßdämpfern über Flusssensoren bis hin zu Schutzkleidung.

Rückfragehinweis:
Arash Nikoubashman
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10
+43-1-58801-13631
arash.nikoubashman@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Berichte zu: Cluster Flüssigkeit Physik Stränge Teilchen Teilchenclustern Weiche Knochen Zähigkeit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften