Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasserstoffatome unter der Lupe

27.05.2013
Direkte Beobachtung von Knotenstrukturen in elektronischen Zuständen des Wasserstoffatoms

Um die mikroskopischen Eigenschaften von Materie und ihre Wechselwirkungen mit der Umgebungswelt beschreiben zu können, werden in der Quantenmechanik Wellenfunktionen genutzt, deren Struktur- und Zeitabhängigkeit von der Schrödingergleichung beschrieben werden.


Abbildung: (links) zweidimensionale Projektion von Elektronen aus der Anregung von Wasserstoffatomen auf vier elektronische Zustände, versehen mit Quantenzahlen (n1,n2,m) und mit (von oben nach unten) 0, 1, 2 und 3 Knoten in ihrer Wellenfunktion für die parabolische Koordinate ζ = r+z; (rechts) Vergleich der experimentell gemessenen radialen Verteilung (durchgehende Linien) mit Ergebnissen aus quantenmechanischen Berechnungen (gestrichelte Linien), der zeigt, dass im Experiment die Knotenstruktur der quantenmechanischen Wellenfunktion gemessen wurde.
Abb. MBI

In Atomen lassen sich mithilfe von elektronischen Wellenfunktionen u.a. Ladungsverteilungen beschreiben, deren Größenordnung weit von unserem alltäglichen Erfahrungshorizont entfernt ist. Die experimentelle Beobachtung der Ladungsverteilung wird dadurch erschwert, dass der Vorgang der Messung selbst Auswirkungen auf die Wellenfunktion hat und jede Messung selektiv nur eine Manifestation der möglichen Zustände erfasst. Physiker behelfen sich daher mit Berechnungen von Ladungsverteilungen, die mit Lehrbuchwissen möglich sind.

Besser gesagt, bis heute war dies so. Unter der Federführung von Wissenschaftlern des MBI gelang es nun einem internationalen Forscherteam ein Mikroskop zu entwickeln, das die Vergrößerung der Wellenfunktion angeregter Wasserstoffatome um einen Faktor von mehr als zwanzigtausend erlaubt. Damit können die Knotenstrukturen der elektronischen Zustände des Wasserstoffatoms auf einem zweidimensionalen Detektor sichtbar gemacht werden. Die Ergebnisse der Arbeit stellen die Verwirklichung einer drei Jahrzehnte alten Idee dar und wurden in Physical Review Letters (PRL 110, 213001 (2013)) (Physicsworld) veröffentlicht.

Die Entwicklung der Quantenmechanik in der ersten Hälfte des letzten Jahrhunderts hatte erheblichen Einfluss auf das naturwissenschaftliche Verständnis der Welt. Die Quantenmechanik erweiterte das auf der klassischen Newtonschen Mechanik aufbauende Weltbild um eine Beschreibung der Mikrowelt, deren Eigenschaften sich mit klassischen Ansätzen nicht erklären ließen.

Diese Eigenschaften umfassen z.B. die Teilchen-Welle-Dualität, die Interferenz und Verschränkung von Teilcheneigenschaften, die Heisenbergsche Unschärferelation und das Paulische Ausschlussprinzip. Von zentraler Bedeutung in der Quantenmechanik ist das Konzept der Wellenfunktion, die eine mathematische Lösung der zeitabhängigen Schrödingergleichung erlaubt. Gemäß der Kopenhagener Interpretation beschreibt die Wellenfunktion die Wahrscheinlichkeit von Messergebnissen, die aus einem quantenmechanischen System hervorgehen wie z.B. die Energie eines Systems oder die Position und der Impuls seiner Bestandteile.

Die Wellenfunktion erlaubt damit die Beschreibung nicht-klassischer Phänomene auf der Mikroskala, die durch Messungen auf der Makroskala beobachtet werden. Die Messung entspricht dem Betrachten eines oder mehrerer der unzähligen möglichen Manifestationen der Wellenfunktion.

Trotz ihres enormen Einflusses auf die moderne Elektronik und Photonik, bieten die Quantenmechanik und die sich daraus eröffnenden Möglichkeiten noch immer große intellektuelle Herausforderungen. Immer wieder wurden neue Experimente angeregt, um die faszinierenden Vorhersagen der Theorie zu veranschaulichen. So erhielten beispielweise Haroche und Wineland den Nobelpreis 2012 für ihre Arbeiten zur Messung und Steuerung einzelner Quantensysteme in störungsfreien Quantenexperimenten, die den Weg für genauere optische Uhren und möglicherweise sogar für die zukünftige Realisierung eines Quantencomputers ebneten.

Unter Verwendung kurzer Laserimpulse können in Experimenten kohärente Überlagerungen von stationären quantenmechanischen Zuständen (Wellen) der Elektronen, die sich auf periodischen Umlaufbahnen um Atomkerne bewegen, beobachtet werden. Die Wellenfunktion jedes dieser elektronischen stationären Zustände ist eine stehende Welle, die ein Knotenmuster aufweist in dem sich die Quantenzahlen der jeweiligen Zustände wiederspiegeln. Zur Beobachtung solcher Knotenmuster wurden Raster-Tunnel-Verfahren auf Oberflächen angewandt. Außerdem ermöglichen jüngst durchgeführte Laserionisierungsexperimente die Herstellung von Licht im extremen UV-Bereich, welches die initiale Wellenfunktion eines Atoms oder Moleküls im Ruhezustand kodiert.

Vor ungefähr 30 Jahren haben russische Theoretiker eine alternative experimentelle Methode vorgestellt um die Eigenschaften von Wellenfunktionen zu messen. Sie schlugen vor, Experimente zur Erforschung der Laserionisierung von atomarem Wasserstoff in einem statischen elektrischen Feld durchzuführen. Sie sagten voraus, dass die Projektion von Elektronen auf einem zweidimensionalen Detektor (der senkrecht zum statisch elektrischen Feld platziert ist) die Messung von Interferenzmustern erlaubt, welche unmittelbar die Knotenstruktur der elektronischen Wellenfunktion widerspiegelt. Diese Tatsache liegt in der besonderen Eigenschaft des Wasserstoffs begründet, welches als einziges in der Natur vorkommendes Atom nur ein Elektron enthält. Aufgrund dieser Besonderheit lassen sich die Wellenfunktionen des Wasserstoffs als Produkt von genau zwei Wellenfunktionen darstellen, welche beschreiben, wie sich die Wellenfunktion als eine Funktion zweier sog. „parabolischer Koordinaten“ verändert. Wesentlich ist, dass die Form der beiden parabelförmigen Wellenfunktionen unabhängig von der Stärke des statischen elektrischen Feldes gleichbleibend ist und somit auf der gesamten Reise des Elektrons vom Ionisierungsort zum zweidimensionalen Detektor (in unserem Experiment etwa ein halber Meter!!) erhalten bleibt.

Die schlüssige Idee in die experimentelle Realität umzusetzen war indessen alles andere als einfach. Da Wasserstoffatome nicht chemisch stabil sind, mussten sie zunächst per Laserdissoziation eines geeigneten Vorläufermoleküls (Wasserstoffdisulfid) hergestellt werden. Dann mussten die Wasserstoffatome in entsprechende elektronische Zustände angeregt werden, was wiederum zwei weitere, genau abzustimmende Laserquellen erforderte. Waren die Elektronen dann angeregt, musste schließlich eine äußerst empfindliche elektrostatische Linse zum Einsatz kommen, um die physikalischen Dimensionen des Atoms in den Bereich einer Millimeterskala zu vergrößern, auf der sie dann mit bloßem Auge auf einem zweidimensionalen Bildwandler beobachtet und mit einem Kamerasystem aufgenommen werden konnten.

Die wichtigsten Ergebnisse sind in der Abbildung unten dargestellt. Die Abbildung zeigt die rohen Kameradaten von vier Messungen, bei denen das Wasserstoffatom auf Zustände mit 0, 1, 2, und 3 Knoten in der Wellenfunktion für die parabolische Koordinate ζ = r+z angeregt wurde. Wie die experimentell ermittelten Projektionen auf dem zweidimensionalen Detektor zeigen, können die Knoten leicht über die Messungen erfasst werden. Der experimentelle Aufbau dient hier als Mikroskop, das es uns bei einer Vergrößerung um einen Faktor von etwa zwanzigtausend ermöglicht, sehr tief in ein Wasserstoffatom hinein zu schauen.

Über den reinen Nachweis einer mehr als 30 Jahre alten theoretischen Überlegung hinaus, werden in unserem Experiment wunderschön die Feinheiten der Quantenmechanik demonstriert. Außerdem sollten unsere Ergebnisse als ein fruchtbares Spielfeld für weitere Forschungen dienen, bei denen man beispielsweise Wasserstoffatome gleichzeitig sowohl elektrischen wie magnetischen Feldern aussetzt. Das einfachste Atom in der Natur hat immer noch eine Menge spannender Physik zu bieten.

Kontakt
Aneta Stodolna
FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands
A.Smolkowska@amolf.nl
Prof. Marc J.J. Vrakking
Max-Born-Institut, Max Born Straße 2A, D-12489 Berlin, Germany
Marc.Vrakking@mbi-berlin.de
Gesine Wiemer
Forschungsverbund Berlin
Presse- und Öffentlichkeitsarbeit
Rudower Chaussee 17
12489 Berlin
Tel.: (030) 6392-3338
E-Mail: wiemer@fv-berlin.de

Gesine Wiemer | Forschungsverbund Berlin
Weitere Informationen:
http://www.fv-berlin.de
http://www.mbi-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten