Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was den Spin zum Umklappen bringt

02.06.2016

Der Einstein-de Haas Effekt zeigt, dass der Magnetismus auf den Drehimpuls von Elektronen zurückgeht, und gilt als makroskopischer Nachweis des Elektronenspins. Forscher am Karlsruher Institut für Technologie (KIT) und am Institut Néel des CNRS Grenoble haben diesen Effekt nun erstmals auf der Ebene eines einzelnen Spins untersucht und als „Quanten Einstein-de Haas Effekt“ neu formuliert. Über ihre Arbeit berichten sie in der Zeitschrift Nature Communications (DOI: 10.1038/ncomms11443).

Quantenobjekte besitzen Eigenschaften, die sie wesentlich von makroskopischen Objekten unterscheiden. Demnach verhalten sich Elektronen wie winzig kleine Magnete, bei denen ein Pol nach oben weist. Unter bestimmten Bedingungen kann der Spin umklappen und das Teilchen seine Rotationsrichtung ändern.


Die mechanischen Eigenschaften der Kohlenstoffnanoröhre (schwarz) bestimmen das Umklappen des Spins (orange) eines Moleküls (grün und rot).

Abbildung: Christian Grupe/KIT

Wissenschaftler formulierten Anfang des 20. Jahrhunderts die Gesetze, die das Verhalten von quantenphysikalischen Objekten im Unterschied zu Objekten der klassischen Physik beschreiben. So führte Albert Einstein 1915 gemeinsam mit dem niederländischen Physiker Wander Johannes de Haas ein Experiment durch, in dem ein von einer elektrischen Spule umschlossener magnetisierbarer Stab beim Einschalten eines elektrischen Stroms eine Rotation erfährt.

Diese Beobachtung beweist, dass der erzeugte Magnetismus auf den Eigendrehimpuls der inhärenten Elektronen des Stabmaterials zurückzuführen ist. Sie gilt als makroskopischer Nachweis des Elektronenspins und wurde als Einstein-de Haas Effekt bekannt.

Was aber geschieht, wenn das magnetische Material, das im oben beschriebenen Experiment aus einer großen Zahl von Elektronenspins besteht, auf einen einzigen Spin – den Spin eines Quantenmagneten – reduziert wird? Dieser Frage gingen Forscher des KIT und des Institut Néel des Centre National de la Recherche Scientifique (CNRS) in Grenoble/Frankreich nach:

Sie befestigten ein magnetisches Molekül auf einer Kohlenstoffnanoröhre und maßen den Stromfluss durch diese Anordnung unter Änderung des externen Magnetfelds. Wie die Wissenschaftler nun in der Zeitschrift Nature Communications berichten, wiesen sie damit nach, dass das Umkippen des magnetischen Moments des Quantenmagneten von den mechanischen Eigenschaften der Kohlenstoffnanoröhre bestimmt wird.

„Nur wenn der Spin mit einem Phonon mit der richtigen Energie koppelt, kann er umklappen“, erklärt Professor Mario Ruben, Leiter des Arbeitskreises Molekulare Materialien am Institut für Nanotechnologie (INT) und Institut für Anorganische Chemie (AOC) des KIT.

Diesen Zusammenhang formulierten die Forscher nun neu als „Quanten Einstein-de Haas Effekt“ für die Nanowelt der Quantenmagnete. Einer der beteiligten Wissenschaftler, Professor Wolfgang Wernsdorfer, kehrt am 1. Juni dieses Jahres vom Institut Néel in Grenoble nach Deutschland zurück und baut im Rahmen einer Humboldt-Professur am KIT ein bis jetzt einzigartiges Zentrum für molekulare Quantenspintronik auf.

Damit ist es nun möglich, bahnbrechende Arbeiten zu Elektronik, Spinphysik und Quantencomputing am KIT durchzuführen. Eines der Ziele ist, die ersten Bauteile für Quantencomputer herzustellen – ultraschnelle und energieeffiziente Computer, die auf magnetischen Molekülen und Kernspins basieren.

Marc Ganzhorn, Svetlana Klyatskaya, Mario Ruben & Wolfgang Wernsdorfer: Quantum Einstein-de Haas effect. Nature Communications, 2016. DOI: 10.1038/ncomms11443

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie