Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die wahre Gestalt der Röhre

21.07.2010
Leipziger und Jülicher Wissenschaftler fundieren Röhrenkonzept von Polymeren

Was lange Zeit lediglich eine abstrakte Vorstellung war, ist jetzt endlich auch mathematisch und experimentell greifbar: Das so genannte Röhrenkonzept, das besagt, dass jedes einzelne Polymer einer Polymerschmelze oder Polymerlösung von seinen Nachbarn in einen röhrenförmigen Käfig eingesperrt wird, dem es nur durch sehr langsame, schlängelnde Bewegungen entkommen kann.

Jens Glaser vom Institut für Theoretische Physik der Universität Leipzig, erster Autor eines jetzt in der Fachzeitschrift Physical Review Letters (PRL) veröffentlichten Artikels, freut sich: „Die Röhre ist nun erstmals in ihrer tatsächlichen räumlichen Struktur verstanden.“

Das derzeitige physikalische Verständnis von Polymermaterialien wie etwa Plastik, Haarshampoo oder Wackelpudding beruht auf dem sogenannten Röhrenkonzept, das besagt, dass jedes einzelne Polymer einer Polymerschmelze oder Polymerlösung von seinen Nachbarn in einen röhrenförmigen Käfig eingesperrt wird, dem es nur durch sehr langsame, schlängelnde Bewegungen entkommen kann. Bislang haben Theoretiker diese Röhren gerne als effektive Zylinder idealisiert, aber die neue Arbeit in PRL weist nun ausgeprägte Heterogenitäten in der Röhrendicke nach und erklärt diese mithilfe einer systematischen mikroskopischen Theorie.

Das ist ein wichtiger Schritt zur Lösung einer modernen Variante des legendären gordischen Knotens. Auf der Nanoskala sehen Polymermaterialien nämlich aus wie enorme Portionen verhedderter Spaghetti, und die Polymerforschung versucht, ihre oft spektakulären Materialeigenschaften ausgehend von diesem molekularen Irrgarten vorherzusagen. Ähnlich Alexander dem Großen, der bekanntlich dem unentwirrbaren gordischen Knoten mit dem Schwert zu Leibe rückte, schlugen die beiden theoretischen Physiker Samuel F. Edwards und Pierre-Gilles de Gennes in den späten 1960er Jahren mithilfe des Röhrenkonzepts einen Weg vor, dieses molekulare Durcheinander mit einem Streich aufzulösen. Trotz beachtlicher Fortschritte, die auf diesem Weg erzielt werden konnten, blieb die Röhre selbst eine abstrakte hypothethische Vorstellung und konnte außerhalb von Computersimulationen nie richtig dingfest gemacht werden.

Einen Durchbruch brachten mikroskopische Beobachtungen von Biopolymeren wie Mikrotubuli und Aktin, aus denen sich in der Natur durch Selbstorganisation Netzwerke bilden, die wiederum tierischen und menschlichen Zellen ihre bemerkenswerten mechanischen Eigenschaften verleihen. Durch Ausnutzung der im Vergleich zu synthetischen Polymeren sehr viel steiferen Struktur dieser Moleküle gelang Josef Käs, Helmut Strey, und Erich Sackmann eine direkte mikroskopische Visualisierung der Röhre. Für deren mittlere Dicke entwickelte David Morse, ausgehend von der tatsächlichen Topologie der Verhedderungen, eine systematische mikroskopische Theorie. Aufbauend auf diesen Errungenschaften und auf einigen neueren Beiträgen konnten nun zwei deutsche Arbeitsgruppen aus Leipzig und Jülich den ersten systematischen Vergleich einer erweiterten selbstkonsistenten Theorie der in Wahrheit ziemlich inhomogenen Röhre mit umfänglichen und präzisen Daten vorlegen. „Eine Reihe interessanter Fragestellungen, zum Beispiel hinsichtlich der Krümmungsverteilung der Röhren und deren Konsequenzen für die Fließeigenschaften von Polymeren, können nun neu angegangen werden”, kommentiert Glaser.

Weitere Informationen: Prof.Dr. Klaus Kroy
Telefon: +49 341 97-32436
E-Mail: klaus.kroy@itp.uni-leipzig.de

Dr. Bärbel Adams | Universität Leipzig
Weitere Informationen:
http://www.physik.uni-leipzig.de/
http://www.uni-leipzig.de/presse

Weitere Berichte zu: Knoten PRL Physik Polymere Polymerlösung Polymermaterial Polymerschmelze Röhre Röhrenkonzept

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung

26.07.2017 | Biowissenschaften Chemie

Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa

26.07.2017 | Biowissenschaften Chemie

Biomarker zeigen Aggressivität des Tumors an

26.07.2017 | Biowissenschaften Chemie