Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verstärken jenseits quantenphysikalischer Grenzen

18.08.2010
Signale lassen sich nach dem Zufallsprinzip ohne zusätzliches Rauschen verstärken

Für Techniker ist es ein unumgehbares Gesetz: beim Verstärken eines Lichtsignals entsteht Rauschen. Das Signal erhält einen zufallsbestimmten Anteil, der keine Information trägt und nur stört. Bemerkbar macht sich die unerwünschte Begleiterscheinung etwa beim Informationstransfer über den Atlantik durch Glasfaserkabeln.

Alle paar Kilometer müssen die Signale verstärkt werden, damit sie die weite Entfernung überbrücken können. Würde dabei nicht jedes Mal Rauschen hinzugefügt, ließe sich durch die Kabel mehr Information pro Zeiteinheit transportieren. Ein gewisser Teil dieses Rauschens kommt nicht von der unvollkommenen Verstärkertechnik, sondern liegt in der quantenphysikalischen Natur der Lichtteilchen (Photonen) begründet, aus denen die Lichtsignale bestehen. Für Experten galt bislang: Auch ein perfekter Verstärker, kann dieses so genannte Quantenrauschen nicht vermeiden. Dass dies doch möglich ist, haben Forscher am Max-Planck-Institut für die Physik des Lichts und an der Universität Erlangen-Nürnberg nun experimentell bewiesen. (Nature Physics, a advanced online publication 15. August 2010)

Das Quantenrauschen resultiert aus der Unbestimmtheit, die die Welt von Photonen, Elektronen und Atomen beherrscht. Der Ort und der Impuls eines Teilchens lässt sich gemäß der berühmten Heisenbergschen Unschärferelation nicht gleichzeitig exakt bestimmen. Bei einer Lichtwelle ist es ähnlich. Sie besteht aus Photonen und ist daher Teil der Quantenwelt. Ihre Amplitude und ihre Phase lassen sich nicht gleichzeitig exakt bestimmen. Verstärkt man ein optisches Signal, erhöht man auch dessen Unbestimmtheit zusätzlich. Das äußert sich darin, dass das verstärkte Signal einen störenden Anteil besitzt, der keine Information enthält - das Quantenrauschen.

Es definiert die unterste Grenze des Rauschens, das beim Verstärken eines Lichtsignals unweigerlich entsteht. Mit anderen Worten: weniger Rauschen geht nicht. Das Quantenrauschen spielt im Alltagsleben meist keine Rolle, weil es nur bei der Verstärkung äußerst schwacher Signale ins Gewicht fällt. In Forschungslabors und im transatlantischen Glasfasernetz hingegen werden Signalstärken genutzt, die so klein sind, dass selbst das schwache Quantenrauschen schon stört.

Doch zumindest für Anwendungen in der Forschung könnte sich das bald ändern. Eine Kollaboration um Gerd Leuchs und Christoph Marquardt vom Erlanger Max-Planck-Institut für die Physik des Lichts und der Universität Erlangen-Nürnberg, zusammen mit Ulrik Andersen von der Technischen Universität Dänemark und Radim Filip von der Palacky Universität Olomouc hat eine verblüffende Entdeckung gemacht. Die Physiker haben nämlich bewiesen, dass sich optische Signale ganz ohne Rauschen verstärken lassen. Mehr noch: sie zeigten, dass die Phase des Lichtes nach der Verstärkung sogar weniger unbestimmt war als vorher. Die Phase des Lichtes dient bei manchen Anwendungen als wichtiger Informationsträger, etwa bei Interferometern, die unter anderem kleinste Längenunterschiede messen.

Mit mehr Rauschen lassen sich Signale rauschfrei verstärken

Dieser experimentelle Erfolg gelang etwa zeitgleich mit ähnlichen Arbeiten einer australischen, einer italienischen und einer französischen Gruppe. "Das neue Konzept der deutsch-tschechisch-dänischen Kollaboration zeichnet sich durch besondere Einfachheit und daher gute Implementierbarkeit aus", sagt Gerd Leuchs, Leitender Direktor des Max-Planck-Instituts für die Physik des Lichtes.

Die Erlanger Forscher haben in ihrem Experiment zunächst äußerst schwache Laserpulse erzeugt. Paradoxerweise gelang den Forschern deren rauschfreie Verstärkung, indem sie dem unverstärkten Laserpuls zunächst stark verrauschtes Licht hinzufügten, ihm also absichtlich ein Rauschen aufzwangen.

Dadurch steigt zwar die Intensität des Lichtes. Aber es wächst auch die Unbestimmtheit der Phase des Signals. Darauf folgt der eigentliche Trick: Durch eine relativ einfache Technik entfernen die Erlanger Forscher aus dem verrauschten Puls eine bestimmte Anzahl von Photonen. Quantenphysikalisch betrachtet entspricht eine feste Anzahl von Photonen einem Zustand des Lichtes, bei der die Phase völlig unbestimmt ist, also jeden beliebigen Wert annehmen kann. Das Herausnehmen eines solchen Zustands verändert das Lichtsignal: Seine Phase gewinnt deutlich an Bestimmtheit. Vereinfacht ausgedrückt bleiben nach dem Entfernen von Photonen mit beliebiger Phase Lichtteilchen mit relativ genau festgelegter Phase übrig.

Das Signal wird schärfer, je mehr Photonen entfernt werden

Weil die herausgenommenen Photonen zudem eine relativ geringe Amplitude aufweisen, bleiben nach ihrem Entfernen nur die Photonen mit hoher Amplitude übrig. Die Lichtwelle hat somit eine höhere Amplitude als vor dem Hinzufügen des Rauschens. Je höher die Amplitude der Lichtwelle, desto größer ist ihre Intensität. Die durch das Hinzufügen des Rauschens gewonnene Intensität bleibt also erhalten. Das Signal wird verstärkt.

Die Forscher stellten durch eine Messreihe fest, dass die Phase umso genauer festgelegt und die Amplitude umso größer wird, je mehr Photonen herausgenommen werden. Maximal entfernten die Physiker vier Photonen, wodurch eine Verdopplung der Amplitude gelang.

Die Medaille hat allerdings auch eine Kehrseite. Nicht aus jedem Lichtpuls lässt sich eine vorgegebene Anzahl von Photonen entfernen. Daher gelingt die Verstärkung nur für einen Teil der Lichtpulse, die vom Laser erzeugt werden. Der Anteil der Pulse, die nicht verstärkt werden können, steigt mit der Anzahl der entnommenen Photonen, also umso stärker, je stärker die Unbestimmtheit der Phase vermindert werden kann.

Die Technik könnte die Suche nach Gravitationswellen erleichtern

"Daher lässt sich die Technik nicht für die Informationsübertragung durch Glasfaserkabel nutzen", sagt Christoffer Wittmann, der an den Experimenten mitwirkte. Denn Information wird, ähnlich wie beim Morsecode, durch eine Folge von Lichtpulsen übermittelt. Wenn ein Teil davon fehlt, geht unweigerlich Information verloren. Welche Pulse verstärkt werden können und welche nicht, ist zudem rein vom Zufall gesteuert und somit nicht vorherseh- oder steuerbar. Auf diese Weise kommt das Rauschen gewissermaßen durch die Hintertür wieder ins System. "Wenn man die Wahrscheinlichkeit dafür, dass ein Puls nicht verstärkt werden kann in den Formeln für die Unbestimmtheit berücksichtigt, zeigt sich, dass wir die Heisenbergsche Unschärferelation nicht verletzt haben", sagt Christian Müller, der das Experiment mit aufgebaut hat. Diese fundamentale Formel könne nur probabilistisch umgangen werden. Die Zufallsnatur der Quantenphysik bleibt somit erhalten.

Dennoch sieht Christoph Marquardt Anwendungen der von den Erlanger Physikern entwickelten Technik. Überall, wo es nicht nötig sei, alle ankommenden Signale zu verstärken, könne die Technik von Nutzen sein. "Sie könnte bei der Detektion von sehr schwachen Signalen helfen, die ab und zu auftreten und normalerweise im Rauschen untergehen, daher also nicht nachweisbar sind", sagt der Forscher. Als Beispiel nennt er die Detektion von Gravitationswellen. Diese entstehen in den Tiefen des Alls, beispielsweise bei Supernova-Explosionen und durchdringen auf ihrem Weg durchs All auch die Erde. Da sie den Raum ein wenig dehnen und stauchen, machen sie sich laut Theorie durch winzigste Längenänderungen bemerkbar. Um diese nachzuweisen, suchen Forscher nach äußerst schwachen Signalen in eigens dafür konzipierten Laserinterferometern. "Hier wäre man froh, wenn man überhaupt einmal ein Signal detektieren könnte", sagt Marquardt. "Solch eine Suche nach schwachen Signalen findet man auch in anderen Systemen, bei denen der neue Verstärker eingesetzt werden kann."

Originalveröffentlichung:

Mario A. Usuga, Christian R. Müller, Christoffer Wittmann, Petr Marek, Radim Filip, Christoph Marquardt, Gerd Leuchs, Ulrik L. Andersen
Noise-powered probabilistic concentration of phase information
Nature Physics, Advanced Online Publication 15. August 2010: DOI 10.1038/NPHYS1743

Weitere Informationen erhalten Sie von:

Christian Müller
Max-Planck-Institut für die Physik des Lichts, Erlangen
Tel.: +49 9131 6877-129
E-Mail: christian.mueller@mpl.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie