Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verstärken jenseits quantenphysikalischer Grenzen

18.08.2010
Signale lassen sich nach dem Zufallsprinzip ohne zusätzliches Rauschen verstärken

Für Techniker ist es ein unumgehbares Gesetz: beim Verstärken eines Lichtsignals entsteht Rauschen. Das Signal erhält einen zufallsbestimmten Anteil, der keine Information trägt und nur stört. Bemerkbar macht sich die unerwünschte Begleiterscheinung etwa beim Informationstransfer über den Atlantik durch Glasfaserkabeln.

Alle paar Kilometer müssen die Signale verstärkt werden, damit sie die weite Entfernung überbrücken können. Würde dabei nicht jedes Mal Rauschen hinzugefügt, ließe sich durch die Kabel mehr Information pro Zeiteinheit transportieren. Ein gewisser Teil dieses Rauschens kommt nicht von der unvollkommenen Verstärkertechnik, sondern liegt in der quantenphysikalischen Natur der Lichtteilchen (Photonen) begründet, aus denen die Lichtsignale bestehen. Für Experten galt bislang: Auch ein perfekter Verstärker, kann dieses so genannte Quantenrauschen nicht vermeiden. Dass dies doch möglich ist, haben Forscher am Max-Planck-Institut für die Physik des Lichts und an der Universität Erlangen-Nürnberg nun experimentell bewiesen. (Nature Physics, a advanced online publication 15. August 2010)

Das Quantenrauschen resultiert aus der Unbestimmtheit, die die Welt von Photonen, Elektronen und Atomen beherrscht. Der Ort und der Impuls eines Teilchens lässt sich gemäß der berühmten Heisenbergschen Unschärferelation nicht gleichzeitig exakt bestimmen. Bei einer Lichtwelle ist es ähnlich. Sie besteht aus Photonen und ist daher Teil der Quantenwelt. Ihre Amplitude und ihre Phase lassen sich nicht gleichzeitig exakt bestimmen. Verstärkt man ein optisches Signal, erhöht man auch dessen Unbestimmtheit zusätzlich. Das äußert sich darin, dass das verstärkte Signal einen störenden Anteil besitzt, der keine Information enthält - das Quantenrauschen.

Es definiert die unterste Grenze des Rauschens, das beim Verstärken eines Lichtsignals unweigerlich entsteht. Mit anderen Worten: weniger Rauschen geht nicht. Das Quantenrauschen spielt im Alltagsleben meist keine Rolle, weil es nur bei der Verstärkung äußerst schwacher Signale ins Gewicht fällt. In Forschungslabors und im transatlantischen Glasfasernetz hingegen werden Signalstärken genutzt, die so klein sind, dass selbst das schwache Quantenrauschen schon stört.

Doch zumindest für Anwendungen in der Forschung könnte sich das bald ändern. Eine Kollaboration um Gerd Leuchs und Christoph Marquardt vom Erlanger Max-Planck-Institut für die Physik des Lichts und der Universität Erlangen-Nürnberg, zusammen mit Ulrik Andersen von der Technischen Universität Dänemark und Radim Filip von der Palacky Universität Olomouc hat eine verblüffende Entdeckung gemacht. Die Physiker haben nämlich bewiesen, dass sich optische Signale ganz ohne Rauschen verstärken lassen. Mehr noch: sie zeigten, dass die Phase des Lichtes nach der Verstärkung sogar weniger unbestimmt war als vorher. Die Phase des Lichtes dient bei manchen Anwendungen als wichtiger Informationsträger, etwa bei Interferometern, die unter anderem kleinste Längenunterschiede messen.

Mit mehr Rauschen lassen sich Signale rauschfrei verstärken

Dieser experimentelle Erfolg gelang etwa zeitgleich mit ähnlichen Arbeiten einer australischen, einer italienischen und einer französischen Gruppe. "Das neue Konzept der deutsch-tschechisch-dänischen Kollaboration zeichnet sich durch besondere Einfachheit und daher gute Implementierbarkeit aus", sagt Gerd Leuchs, Leitender Direktor des Max-Planck-Instituts für die Physik des Lichtes.

Die Erlanger Forscher haben in ihrem Experiment zunächst äußerst schwache Laserpulse erzeugt. Paradoxerweise gelang den Forschern deren rauschfreie Verstärkung, indem sie dem unverstärkten Laserpuls zunächst stark verrauschtes Licht hinzufügten, ihm also absichtlich ein Rauschen aufzwangen.

Dadurch steigt zwar die Intensität des Lichtes. Aber es wächst auch die Unbestimmtheit der Phase des Signals. Darauf folgt der eigentliche Trick: Durch eine relativ einfache Technik entfernen die Erlanger Forscher aus dem verrauschten Puls eine bestimmte Anzahl von Photonen. Quantenphysikalisch betrachtet entspricht eine feste Anzahl von Photonen einem Zustand des Lichtes, bei der die Phase völlig unbestimmt ist, also jeden beliebigen Wert annehmen kann. Das Herausnehmen eines solchen Zustands verändert das Lichtsignal: Seine Phase gewinnt deutlich an Bestimmtheit. Vereinfacht ausgedrückt bleiben nach dem Entfernen von Photonen mit beliebiger Phase Lichtteilchen mit relativ genau festgelegter Phase übrig.

Das Signal wird schärfer, je mehr Photonen entfernt werden

Weil die herausgenommenen Photonen zudem eine relativ geringe Amplitude aufweisen, bleiben nach ihrem Entfernen nur die Photonen mit hoher Amplitude übrig. Die Lichtwelle hat somit eine höhere Amplitude als vor dem Hinzufügen des Rauschens. Je höher die Amplitude der Lichtwelle, desto größer ist ihre Intensität. Die durch das Hinzufügen des Rauschens gewonnene Intensität bleibt also erhalten. Das Signal wird verstärkt.

Die Forscher stellten durch eine Messreihe fest, dass die Phase umso genauer festgelegt und die Amplitude umso größer wird, je mehr Photonen herausgenommen werden. Maximal entfernten die Physiker vier Photonen, wodurch eine Verdopplung der Amplitude gelang.

Die Medaille hat allerdings auch eine Kehrseite. Nicht aus jedem Lichtpuls lässt sich eine vorgegebene Anzahl von Photonen entfernen. Daher gelingt die Verstärkung nur für einen Teil der Lichtpulse, die vom Laser erzeugt werden. Der Anteil der Pulse, die nicht verstärkt werden können, steigt mit der Anzahl der entnommenen Photonen, also umso stärker, je stärker die Unbestimmtheit der Phase vermindert werden kann.

Die Technik könnte die Suche nach Gravitationswellen erleichtern

"Daher lässt sich die Technik nicht für die Informationsübertragung durch Glasfaserkabel nutzen", sagt Christoffer Wittmann, der an den Experimenten mitwirkte. Denn Information wird, ähnlich wie beim Morsecode, durch eine Folge von Lichtpulsen übermittelt. Wenn ein Teil davon fehlt, geht unweigerlich Information verloren. Welche Pulse verstärkt werden können und welche nicht, ist zudem rein vom Zufall gesteuert und somit nicht vorherseh- oder steuerbar. Auf diese Weise kommt das Rauschen gewissermaßen durch die Hintertür wieder ins System. "Wenn man die Wahrscheinlichkeit dafür, dass ein Puls nicht verstärkt werden kann in den Formeln für die Unbestimmtheit berücksichtigt, zeigt sich, dass wir die Heisenbergsche Unschärferelation nicht verletzt haben", sagt Christian Müller, der das Experiment mit aufgebaut hat. Diese fundamentale Formel könne nur probabilistisch umgangen werden. Die Zufallsnatur der Quantenphysik bleibt somit erhalten.

Dennoch sieht Christoph Marquardt Anwendungen der von den Erlanger Physikern entwickelten Technik. Überall, wo es nicht nötig sei, alle ankommenden Signale zu verstärken, könne die Technik von Nutzen sein. "Sie könnte bei der Detektion von sehr schwachen Signalen helfen, die ab und zu auftreten und normalerweise im Rauschen untergehen, daher also nicht nachweisbar sind", sagt der Forscher. Als Beispiel nennt er die Detektion von Gravitationswellen. Diese entstehen in den Tiefen des Alls, beispielsweise bei Supernova-Explosionen und durchdringen auf ihrem Weg durchs All auch die Erde. Da sie den Raum ein wenig dehnen und stauchen, machen sie sich laut Theorie durch winzigste Längenänderungen bemerkbar. Um diese nachzuweisen, suchen Forscher nach äußerst schwachen Signalen in eigens dafür konzipierten Laserinterferometern. "Hier wäre man froh, wenn man überhaupt einmal ein Signal detektieren könnte", sagt Marquardt. "Solch eine Suche nach schwachen Signalen findet man auch in anderen Systemen, bei denen der neue Verstärker eingesetzt werden kann."

Originalveröffentlichung:

Mario A. Usuga, Christian R. Müller, Christoffer Wittmann, Petr Marek, Radim Filip, Christoph Marquardt, Gerd Leuchs, Ulrik L. Andersen
Noise-powered probabilistic concentration of phase information
Nature Physics, Advanced Online Publication 15. August 2010: DOI 10.1038/NPHYS1743

Weitere Informationen erhalten Sie von:

Christian Müller
Max-Planck-Institut für die Physik des Lichts, Erlangen
Tel.: +49 9131 6877-129
E-Mail: christian.mueller@mpl.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten