Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verständnis mikroskopischer Defekte ermöglicht gezielte Optimierung von Hochtemperatur-Supraleitern

29.06.2010
Forscher aus Augsburg, Gainesville und Kopenhagen berichten in Nature Physics über die Identifizierung der Hauptursache reduzierten Stromtransports.

Physiker aus Augsburg, Gainesville und Kopenhagen berichten in der jüngsten Ausgabe der international renommierten Fachzeitschrift "Nature Physics" wie es ihnen gelungen ist, die elektrische Ladung, die sich an den Grenzflächen zwischen Kristallkörnern sammelt, als Hauptursache für den reduzierten Stromtransport in Supraleitern zu identifizieren und damit die Voraussetzung für eine gezielte Optimierung des Stromtransports in den Kupferoxid-Supraleitern sowie für die Erweiterung der Möglichkeiten ihres praktischen Einsatzes zu schaffen.

In einer Zeit, in der die drohende globale Energiekrise ins Zentrum der politischen und wissenschaftlichen Diskussion rückt und alternative Verfahren der Energiegewinnung ebenso wie neue Möglichkeiten der Energieeinsparung gesucht und diskutiert werden, gewinnt der verlustfreie Stromtransport durch supraleitende Kabel immer mehr an Bedeutung. Obwohl das Phänomen der Supraleitung, dem ein komplizierter Quantenzustand zugrunde liegt, schon seit nahezu einem Jahrhundert bekannt ist, kamen Supraleiter lange Zeit für den Energietransport, sowie für den Bau von Motoren und Generatoren kaum zum Einsatz, da sie nur bei sehr tiefen Temperaturen funktionsfähig sind – Temperaturen, die nur mit enormem Aufwand erreicht werden können.

Mikroskopische Defekte mit besonders negativen Auswirkungen

Erst vor 25 Jahren – mit der Entdeckung der supraleitenden Eigenschaften einiger Kupferoxid-Verbindungen, für deren Kühlung flüssige Luft ausreichend ist – gelangte ein praktischer Einsatz der Supraleitung für die Energieversorgung in Reichweite. Jedoch legte die Natur auch hier wieder einen Stolperstein auf den Erfolgsweg der Supraleitung: Die in fast allen Materialien vorhandenen mikroskopischen Defekte, die sich durch das Aufeinandertreffen einzelner, gegeneinander verdrehter Materialkörner ausbilden, wirken sich in diesen neuen Supraleitern ganz besonders negativ auf den Stromtransport aus.

Dieser Umstand wurde experimentell umfassend untersucht und verschiedene Verfahren zur Verbesserung der physikalischen Eigenschaften dieser Materialien konnten erfolgreich entwickelt werden, wobei hier Pionierarbeit von Forschern der Universität Augsburg geleistet wurde. Aber ein theoretisches Verständnis dieses Problems war bislang nicht vorhanden.

Durch Modellierung und Simulation theoretisch verständlich gemacht

Nun ist es einer internationalen Gruppe von Physikern an der Universität Augsburg, der Universität von Florida in Gainesville und dem Niels-Bohr Institut in Kopenhagen gelungen, die mikroskopischen Defekte in diesen Materialien erfolgreich theoretisch zu modellieren und den supraleitenden Stromtransport zu simulieren. Dabei wurde die sich an den Grenzflächen zwischen zwei Kristallkörnern sammelnde elektrische Ladung als Hauptursache für den reduzierten Stromtransport identifiziert. Dieses theoretische Verständnis erlaubt es nun, nach gezielten Verfahren zur Verbesserung des Stromtransports in den Kupferoxid-Supraleitern zu suchen und damit letztlich die Möglichkeiten ihres praktischen Einsatzes zu erweitern.

Die Arbeit wurde von der Deutschen Forschungsgemeinschaft im Rahmen des Augsburger Sonderforschungsbereichs SFB484 und des neu geschaffenen Augsburg-Münchner Transregios TRR80, sowie dem amerikanischen Department of Energy finanziell unterstützt und in der jüngsten Ausgabe der international renommierten Fachzeitschrift Nature Physics vorgestellt (siehe http://www.nature.com/nphys/journal/vaop/ncurrent/abs/nphys1687.html).

S. Graser , P. J. Hirschfeld, T. Kopp, R. Gutser, B. M. Andersen & J. Mannhart: How grain boundaries limit supercurrents in high-temperature superconductors, in: Nature Physics, published online: 27. June 2010, doi: 10.1038/nphys1687

Ansprechpartner an der Universität Augsburg:

• Dr. Siegfried Graser
siegfried.graser@physik.uni-augsburg.de
• Prof. Dr. Thilo Kopp
thilo.kopp@physik.uni-augsburg.de
• Prof. Dr. Jochen Mannhardt
jochen.mannhart@physik.uni-augsburg.de
Lehrstuhl für Experimentalphysik VI/EKM
Universität Augsburg
86135 Augsburg
Telefon +49(0)821-598-3651

Klaus P. Prem | idw
Weitere Informationen:
http://www.physik.uni-augsburg.de/exp6
http://www.nature.com/nphys/journal/vaop/ncurrent/abs/nphys1687.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten