Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verschränkte Elektronen weisen Proton den Weg

27.05.2013
Das Zerbrechen des Wasserstoffmoleküls in ein Proton und ein Wasserstoffatom nach Photoionisation wurde am Heidelberger MPI für Kernphysik kinematisch vollständig untersucht.

Die quantenmechanische Verschränkung der beiden Elektronen äußert sich dabei in einer deutlichen Asymmetrie der relativen Emissionsrichtung von Elektron und Proton. Die Abhängigkeit der Asymmetrie von der jeweiligen Teilchenenergie kann durch ein einfaches Modell der Überlagerung von Quantenzuständen erklärt werden. [Physical Review Letters, 20. Mai 2013]


Abb. 1: Energiediagramm zur Photoionisation des Wasserstoff-Moleküls H2 mit Dissoziation des Molekülions H2+ in ein H-Atom und ein Proton (rot). Violette Pfeile – durchgezogen: direkte Ionisation; gestrichelt: Autoionisation eines doppelt angeregten Zustands H2**. Die Überlagerung der Zustände gerader (g) und ungerader (u) Symmetrie von H2+ bestimmt (je nach Vorzeichen) die Richtung des Protons.
Grafik: MPI für Kernphysik


Abb. 2: Asymmetrie der relativen Emissionsrichtung von Elektron und Proton. Rötliche Farben: gleiche ...
Grafik: MPI für Kernphysik


Abb. 2: Asymmetrie der relativen Emissionsrichtung von Elektron und Proton. Rötliche Farben: gleiche Richtung bevorzugt; bläuliche Farben: entgegengesetzte Richtung bevorzugt. Dargestellt ist die Abhängigkeit von der kinetischen Energie des Elektrons Ee und der Fragmentationsenergie Ek (= 2 mal die kinetische Energie des Protons).
Grafik: MPI für Kernphysik

Molekularer Wasserstoff (H2) ist das einfachste Molekül, in welchem Elektronenkorrelation eine wichtige Rolle spielt. Dies ermöglicht Zustände, in denen beide Elektronen angeregt sind und deren Gesamtenergie über der Bindungsenergie eines einzelnen Elektrons liegt. Ein solcher doppelt angeregter Zustand kann daher unter Emission eines Elektrons zerfallen.

Diesen Vorgang nennt man Autoionisation, der z. B. aus dem Helium-Atom als einfachstem Beispiel bekannt ist. Im Unterschied hierzu kommt beim H2-Molekül der Abstand der beiden Protonen als zusätzlicher Freiheitsgrad hinzu, deren Bewegung vergleichbar schnell mit der Zerfallszeit des autoionisierenden Zustands erfolgt. Das dynamische Wechselspiel zwischen Elektronen und den wesentlich schwereren Protonen kann zum Aufbruch (Dissoziation) des H2+-Molekül-Ions in ein Proton und ein Wasserstoff-Atom führen. Dieser stark korrelierte Vier-Teilchen-Prozess wurde in den letzten Jahren intensiv untersucht.

Forscher des Heidelberger Max-Planck-Instituts für Kernphysik haben die so genannte dissoziative (Auto-)ionisation von H2 kinematisch vollständig untersucht. Die Anregung des Systems erfolgt mit einer Serie von Attosekunden-Laserpulsen im fernen Ultraviolettbereich. Dabei kann die Dissoziation über zwei Wege erfolgen (siehe Abb. 1): Bei direkter Ionisation wird ein Photoelektron freigesetzt und das zweite Elektron in einen angeregten, ungebundenen Zustand des H2+-Molekülions befördert. Dieser Zustand (u) hat ‚ungerade‘ Symmetrie, d. h. die Wellenfunktion des Elektrons hat am Ort der beiden Protonen jeweils ein unterschiedliches Vorzeichen. Eine weitere Möglichkeit ist die Bildung eines doppelt angeregten Zustands (Q), der über Autoionisation in den gebundenen Grundzustand (g) von H2+ zerfällt. Dieser hat ‚gerade‘ Symmetrie ohne Vorzeichenwechsel der Wellenfunktion.

Beide Wege sind ununterscheidbar, wenn sie sowohl für das Elektron wie für die Fragmente (Proton und Wasserstoffatom) die gleichen Energien liefern. In diesem Fall wird das System durch eine Überlagerung der Zustände (u) und (g) beschrieben – quasi eine molekulare ‚Schrödinger-Katze‘. Je nachdem, wie die Überlagerung erfolgt, kann das Elektron am dem einen oder anderen Kern lokalisiert werden – dabei schwingt es zunächst zwischen den beiden Kernen hin und her. Mit welcher Wahrscheinlichkeit es schließlich an welchem Kern zu finden ist, wird durch die Dynamik des Molekülaufbruchs bestimmt.

Alle Teilchen des Systems sind miteinander verschränkt: Nach Absorption des Photons muss es ungerade Symmetrie haben. Ist also H2+ im Zustand (u) muss das freie Elektron in einem geraden Zustand sein und umgekehrt. Die Lokalisierung des gebundenen Elektrons bestimmt, in welcher Richtung das Proton beobachtet wird. Dieses ‚erinnert‘ sich sozusagen, welche Richtung das freie Elektron eingeschlagen hat. Je nachdem, wie sich das System entwickelt, werden Elektron und Proton vorzugsweise in der gleichen (rot) bzw. in entgegengesetzter Richtung (blau) beobachtet (Abb. 2a). Diese Asymmetrie ist durch die Wahl der Energien von Elektron und Proton festgelegt. Für eine gegebene Frequenz (Photon-Energie) des Lasers und eine bestimmte Energie des Elektrons (bzw. Protons) lässt sich also vorhersagen, ob das Proton (bzw. Elektron) eher in die gleiche oder entgegengesetzte Richtung fliegt.
Die Heidelberger Physiker haben nun ein einfaches Modell entwickelt, mit dem sie sowohl die Dynamik des Molekülaufbruchs als auch die Lokalisierung des gebunden Elektrons beschreiben können. Dieses stimmt, was das Vorzeichen (Phasenlage) der Asymmetrie angeht, sehr gut mit dem Experiment überein (Abb. 2b). Lediglich die Stärke der Asymmetrie lässt sich damit nicht berechnen. Hierfür hat eine Theoriegruppe der Autonomen Universität Madrid eine umfassende Rechnung durchgeführt, welche das qualitative Resultat des einfachen Modells bestätigt und die beobachtete Asymmetrie gut wiedergibt.

Das Verhalten dieses verschränkten Quantensystems ist durch die Symmetrie und seine zeitliche Entwicklung nach Beschuss mit dem UV-Laser vollständig bestimmt. Mittels eines zweiten Laserpulses mit variabler Verzögerung könnte die Asymmetrie durch eine Kontrolle der elektronischen Verschränkung direkt manipuliert werden. Dies soll in weiteren Experimenten untersucht werden.

Originalveröffentlichung:
Electron Localization Involving Doubly Excited States in Broadband Extreme Ultraviolet Ionization of H2
Andreas Fischer et al.
Physical Review Letters 110, 213002 (2013)
doi: 10.1103/PhysRevLett.110.213002

Kontakt:

Andreas Fischer
Tel.: 06221/516-583
Andreas.fischer@mpi-hd.mpg.de

Dr. Robert Moshammer
Tel.: 06221/516-461
E-Mail: robert.moshammer@mpi-hd.mpg.de
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.110.213002
Originalveröffentlichung
http://www.mpi-hd.mpg.de/ullrich/page.php?id=122
Attosekundenphysik (Gruppe Moshammer am MPIK)
http://www.mpi-hd.mpg.de/mpi/de/pfeifer/interatto-home/
INTERATTO-Gruppe von Thomas Pfeifer am MPIK
http://www.mpg.de/346223/forschungsSchwerpunkt
Ein Wegweiser aus Licht für Elektronen (MPG-Jahrbuch 2010)

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

22.08.2017 | Physik Astronomie

Forscher beschreiben neuartigen Antikörper als möglichen Wirkstoff gegen Alzheimer

22.08.2017 | Biowissenschaften Chemie

Virus mit Eierschale

22.08.2017 | Biowissenschaften Chemie