Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verschränkte Elektronen weisen Proton den Weg

27.05.2013
Das Zerbrechen des Wasserstoffmoleküls in ein Proton und ein Wasserstoffatom nach Photoionisation wurde am Heidelberger MPI für Kernphysik kinematisch vollständig untersucht.

Die quantenmechanische Verschränkung der beiden Elektronen äußert sich dabei in einer deutlichen Asymmetrie der relativen Emissionsrichtung von Elektron und Proton. Die Abhängigkeit der Asymmetrie von der jeweiligen Teilchenenergie kann durch ein einfaches Modell der Überlagerung von Quantenzuständen erklärt werden. [Physical Review Letters, 20. Mai 2013]


Abb. 1: Energiediagramm zur Photoionisation des Wasserstoff-Moleküls H2 mit Dissoziation des Molekülions H2+ in ein H-Atom und ein Proton (rot). Violette Pfeile – durchgezogen: direkte Ionisation; gestrichelt: Autoionisation eines doppelt angeregten Zustands H2**. Die Überlagerung der Zustände gerader (g) und ungerader (u) Symmetrie von H2+ bestimmt (je nach Vorzeichen) die Richtung des Protons.
Grafik: MPI für Kernphysik


Abb. 2: Asymmetrie der relativen Emissionsrichtung von Elektron und Proton. Rötliche Farben: gleiche ...
Grafik: MPI für Kernphysik


Abb. 2: Asymmetrie der relativen Emissionsrichtung von Elektron und Proton. Rötliche Farben: gleiche Richtung bevorzugt; bläuliche Farben: entgegengesetzte Richtung bevorzugt. Dargestellt ist die Abhängigkeit von der kinetischen Energie des Elektrons Ee und der Fragmentationsenergie Ek (= 2 mal die kinetische Energie des Protons).
Grafik: MPI für Kernphysik

Molekularer Wasserstoff (H2) ist das einfachste Molekül, in welchem Elektronenkorrelation eine wichtige Rolle spielt. Dies ermöglicht Zustände, in denen beide Elektronen angeregt sind und deren Gesamtenergie über der Bindungsenergie eines einzelnen Elektrons liegt. Ein solcher doppelt angeregter Zustand kann daher unter Emission eines Elektrons zerfallen.

Diesen Vorgang nennt man Autoionisation, der z. B. aus dem Helium-Atom als einfachstem Beispiel bekannt ist. Im Unterschied hierzu kommt beim H2-Molekül der Abstand der beiden Protonen als zusätzlicher Freiheitsgrad hinzu, deren Bewegung vergleichbar schnell mit der Zerfallszeit des autoionisierenden Zustands erfolgt. Das dynamische Wechselspiel zwischen Elektronen und den wesentlich schwereren Protonen kann zum Aufbruch (Dissoziation) des H2+-Molekül-Ions in ein Proton und ein Wasserstoff-Atom führen. Dieser stark korrelierte Vier-Teilchen-Prozess wurde in den letzten Jahren intensiv untersucht.

Forscher des Heidelberger Max-Planck-Instituts für Kernphysik haben die so genannte dissoziative (Auto-)ionisation von H2 kinematisch vollständig untersucht. Die Anregung des Systems erfolgt mit einer Serie von Attosekunden-Laserpulsen im fernen Ultraviolettbereich. Dabei kann die Dissoziation über zwei Wege erfolgen (siehe Abb. 1): Bei direkter Ionisation wird ein Photoelektron freigesetzt und das zweite Elektron in einen angeregten, ungebundenen Zustand des H2+-Molekülions befördert. Dieser Zustand (u) hat ‚ungerade‘ Symmetrie, d. h. die Wellenfunktion des Elektrons hat am Ort der beiden Protonen jeweils ein unterschiedliches Vorzeichen. Eine weitere Möglichkeit ist die Bildung eines doppelt angeregten Zustands (Q), der über Autoionisation in den gebundenen Grundzustand (g) von H2+ zerfällt. Dieser hat ‚gerade‘ Symmetrie ohne Vorzeichenwechsel der Wellenfunktion.

Beide Wege sind ununterscheidbar, wenn sie sowohl für das Elektron wie für die Fragmente (Proton und Wasserstoffatom) die gleichen Energien liefern. In diesem Fall wird das System durch eine Überlagerung der Zustände (u) und (g) beschrieben – quasi eine molekulare ‚Schrödinger-Katze‘. Je nachdem, wie die Überlagerung erfolgt, kann das Elektron am dem einen oder anderen Kern lokalisiert werden – dabei schwingt es zunächst zwischen den beiden Kernen hin und her. Mit welcher Wahrscheinlichkeit es schließlich an welchem Kern zu finden ist, wird durch die Dynamik des Molekülaufbruchs bestimmt.

Alle Teilchen des Systems sind miteinander verschränkt: Nach Absorption des Photons muss es ungerade Symmetrie haben. Ist also H2+ im Zustand (u) muss das freie Elektron in einem geraden Zustand sein und umgekehrt. Die Lokalisierung des gebundenen Elektrons bestimmt, in welcher Richtung das Proton beobachtet wird. Dieses ‚erinnert‘ sich sozusagen, welche Richtung das freie Elektron eingeschlagen hat. Je nachdem, wie sich das System entwickelt, werden Elektron und Proton vorzugsweise in der gleichen (rot) bzw. in entgegengesetzter Richtung (blau) beobachtet (Abb. 2a). Diese Asymmetrie ist durch die Wahl der Energien von Elektron und Proton festgelegt. Für eine gegebene Frequenz (Photon-Energie) des Lasers und eine bestimmte Energie des Elektrons (bzw. Protons) lässt sich also vorhersagen, ob das Proton (bzw. Elektron) eher in die gleiche oder entgegengesetzte Richtung fliegt.
Die Heidelberger Physiker haben nun ein einfaches Modell entwickelt, mit dem sie sowohl die Dynamik des Molekülaufbruchs als auch die Lokalisierung des gebunden Elektrons beschreiben können. Dieses stimmt, was das Vorzeichen (Phasenlage) der Asymmetrie angeht, sehr gut mit dem Experiment überein (Abb. 2b). Lediglich die Stärke der Asymmetrie lässt sich damit nicht berechnen. Hierfür hat eine Theoriegruppe der Autonomen Universität Madrid eine umfassende Rechnung durchgeführt, welche das qualitative Resultat des einfachen Modells bestätigt und die beobachtete Asymmetrie gut wiedergibt.

Das Verhalten dieses verschränkten Quantensystems ist durch die Symmetrie und seine zeitliche Entwicklung nach Beschuss mit dem UV-Laser vollständig bestimmt. Mittels eines zweiten Laserpulses mit variabler Verzögerung könnte die Asymmetrie durch eine Kontrolle der elektronischen Verschränkung direkt manipuliert werden. Dies soll in weiteren Experimenten untersucht werden.

Originalveröffentlichung:
Electron Localization Involving Doubly Excited States in Broadband Extreme Ultraviolet Ionization of H2
Andreas Fischer et al.
Physical Review Letters 110, 213002 (2013)
doi: 10.1103/PhysRevLett.110.213002

Kontakt:

Andreas Fischer
Tel.: 06221/516-583
Andreas.fischer@mpi-hd.mpg.de

Dr. Robert Moshammer
Tel.: 06221/516-461
E-Mail: robert.moshammer@mpi-hd.mpg.de
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.110.213002
Originalveröffentlichung
http://www.mpi-hd.mpg.de/ullrich/page.php?id=122
Attosekundenphysik (Gruppe Moshammer am MPIK)
http://www.mpi-hd.mpg.de/mpi/de/pfeifer/interatto-home/
INTERATTO-Gruppe von Thomas Pfeifer am MPIK
http://www.mpg.de/346223/forschungsSchwerpunkt
Ein Wegweiser aus Licht für Elektronen (MPG-Jahrbuch 2010)

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Magnetische Kontrolle per Handzeichen: Team entwickelt elektronische „Haut“ für virtuelle Realität
22.01.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics