Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Uralte Signale aus dem frühen Universum

13.02.2017

Theoretische Physiker der Universität Basel haben erstmals das Signal bestimmter Gravitationswellen-Quellen berechnet, welches Bruchteile von Sekunden nach dem Urknall entstanden ist. Quelle des Signals ist ein längst vergangenes kosmologisches Phänomen namens «Oscillon». Die Fachzeitschrift «Physical Review Letters» hat die Ergebnisse veröffentlicht.

Gravitationswellen hat bereits Albert Einstein vorhergesagt, tatsächlich nachweisen, konnte man sie aber erst im Herbst 2015. Hochsensible Detektoren empfingen damals die Wellen, die bei der Verschmelzung zweier schwarzer Löcher entstanden sind.


Gemäss den Berechnungen von Prof. Stefan Antusch und seinem Team erzeugen die «Oscillons» einen charakteristischen Peak im ansonsten breiten Spektrum der Gravitationswellen.

Universität Basel, Departement Physik

Gravitationswellen sind anders als alle anderen bekannten Wellen. Während sie sich durch das Universum fortpflanzen, stauchen und strecken sie die Raumzeit, oder anders: sie verzerren die Geometrie des Raumes selbst. Obwohl jede sich beschleunigende Masse Gravitationswellen aussendet, lassen sie sich nur bei extrem grossen Massen wie Schwarzen Löchern oder Sternenexplosionen messen.

Gravitationswellen transportieren Informationen vom Urknall

Gravitationswellen liefern aber nicht nur Erkenntnisse zu solchen astrophysikalischen Grossereignissen, sondern bieten auch Einblick in die Entstehung des Universums selbst. Um mehr über diese Phase des Alls zu erfahren, erforschen Prof. Stefan Antusch und sein Team vom Departement Physik der Universität Basel den sogenannten stochastischen Gravitationswellenhintergrund.

Dieser Hintergrund besteht aus Gravitationswellen von sehr vielen Quellen, die sich überlagern und zusammen ein breites Spektrum an Frequenzen ergeben. Die Basler Physiker berechnen Vorhersagen zu den Frequenzbereichen und zur Stärke der Wellen, die dann in Experimenten getestet werden können.

Stark komprimiertes All

Kurz nach dem Urknall war das heute sichtbare Universum noch sehr klein, dicht und heiss. «Man kann sich da etwas in der Grösse eines Fussballs vorstellen», erklärt Antusch. Das gesamte Weltall war auf diesen sehr engen Raum komprimiert und äusserst turbulent. Die Kosmologie geht heute davon aus, dass das Universum damals von dem Inflaton-Teilchen und seinem dazugehörigen Feld dominiert wurde.

Oscillons erzeugen starkes Signal

Das Inflaton fluktuierte stark und diese Fluktuationen hatten besondere Eigenschaften. Sie bildeten beispielsweise Klumpen, schwankten also in lokalisierten Bereichen. Diese Bereiche nennt man Oscillons. Man kann sie sich als stehende Wellen vorstellen. «Obwohl die Oscillons schon lange nicht mehr existieren, sind die Gravitationswellen, die sie ausgesandt haben, allgegenwärtig – durch sie können wir weiter zurückschauen als jemals zuvor», sagt Antusch.

Der theoretische Physiker und sein Team konnten in numerischen Simulationen berechnen, wie das Signal der Oscillons, welches nur Bruchteile von Sekunden nach dem Urknall ausgesendet wurde, aussieht. Es erscheint als starker Peak in dem ansonsten breiten Frequenzspektrum der Gravitationswellen.

«Wir hätten vor unseren Berechnungen nicht gedacht, dass Oscillons ein solch starkes Signal bei einer bestimmten Frequenz erzeugen können», erläutert Antusch. In einem zweiten Schritt müssen nun experimentelle Physiker das Signal mit Detektoren tatsächlich nachweisen.

Originalartikel

Stefan Antusch, Francesco Cefalà, and Stefano Orani
Gravitational Waves from Oscillons after Inflation
Physical Review Letters (2017), doi: 10.1103/PhysRevLett.118.011303

Weitere Auskünfte

Prof. Dr. Stefan Antusch, Universität Basel, Departement Physik, Tel. +41 61 207 39 18, E-Mail: stefan.antusch@unibas.ch

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie

Kleinste Teilchen aus fernen Galaxien!

22.09.2017 | Physik Astronomie

Physik-Didaktiker aus Münster entwickeln Lehrmaterial zu Quantenphänomenen

22.09.2017 | Bildung Wissenschaft