Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unerwartete Kühleffekte rücken Quantencomputer näher

29.08.2012
In der experimentellen Physik kann das Kühlen auf immer tiefere Temperaturen zur Entdeckung neuer Naturgesetze führen.

Das Team um Prof. Dominik Zumbühl von der Universität Basel hat nun in Zusammenarbeit mit dem IBM-Forschungslabor in Rüschlikon beobachtet, dass in Nanostrukturen bei sehr tiefen Temperaturen ein bislang etabliertes Naturgesetz verletzt wird.


Zwei Elektronen in einer Galliumarsenid-Nanostruktur für Quantencomputing
Grafik: Universität Basel

Diese Entdeckung könnte wichtige Konsequenzen für den Bau eines Quantencomputers haben. Zusammen mit der Aalto-Universität in Finnland konnten die Basler Physiker zudem den bisher kältesten «Kühlschrank» für Nanostrukturen entwickeln. Die Resultate sind in «Physical Review Letters» und «Review of Scientific Instruments» publiziert.

Nanostrukturen – beispielsweise auf Quantenmechanik basierende elektronische Bauteile – sind vielversprechende Kandidaten für die Entwicklung eines Quantencomputers. Soll ein solcher Computer die ihm vorausgesagte enorme Rechenleistung erbringen, müssen die Nanostrukturen auf Temperaturen nahe am absoluten Nullpunkt gekühlt werden. Erst bei diesen extremen Bedingungen lassen sich die magnetischen Eigenschaften einzelner Elektronen, die Spins, kontrollieren.
Ein Forscherteam um den Basler Physikprofessor Dominik Zumbühl hat nun zusammen mit dem IBM-Forschungslabor in Rüschlikon entdeckt, dass sich bei diesen Temperaturen die Spins innerhalb der Nanostrukturen deutlich besser kontrollieren lassen als bisher angenommen.

Naturgesetz bei tiefen Temperaturen verletzt
Das sogenannte Korringa-Gesetz ist ein Naturgesetz, das die Kopplung zwischen dem Magnetismus (Spin) der Elektronen und demjenigen der Kerne in einem Metall beschreibt. Es besagt, dass die Kopplungsstärke der Kernspins proportional zur Temperatur der Elektronen ist. Die Forscher untersuchten diese Kopplung mit einer neu entwickelten Methode und stellten dabei fest, dass das Korringa-Gesetz bei sehr tiefen Temperaturen verletzt ist.

Die auf elektronischen Messungen basierende Methode verwendet ein sogenanntes Spin-Valve, mit dem magnetisch polarisierte Elektronen im metallischen Halbleiter Galliumarsenid (GaAs) kontrolliert erzeugt werden können. Mit der Spin-Valve-Methode konnten die Forscher nun zeigen, dass die Kopplung zwischen dem Magnetismus von Elektronen und Kernen in GaAs wesentlich stärker ist als erwartet. Mit der entdeckten stärkeren Kopplung von Elektronen- und Kernspin könnte man mit einer bereits etablierten magnetischen Kühltechnik für Kerne künftig eine bessere Kühlung der Elektronen erzielen.

Kältester Nano-Kühlschrank
Ein Quantencomputer löst komplexe Rechenvorgänge wie Klimasimulationen in einem Bruchteil der Zeit, die der beste heute existierende Computer benötigt. Elektronen in GaAs-Nanostrukturen gehören zu den bedeutendsten Anwärtern für die Realisierung eines künftigen Quantencomputers. Diese Idee geht auf den Basler Physikprofessor Daniel Loss zurück, der dafür mit dem Marcel-Benoist-Preis 2010 ausgezeichnet wurde. Ein solcher Quantencomputer kann nur bei sehr tiefen Temperaturen funktionieren. Die Basler Physiker haben zu diesem Zweck mit Unterstützung eines Starting Grant des European Research Council einen Kühlschrank speziell für Nanostrukturen entwickelt, welcher nun Temperaturen von weniger als einem tausendstel Grad Celsius über dem absoluten Temperaturnullpunkt erreicht hat. Damit erzielten die Forscher den Kälterekord für einen Nanostruktur-Kühlschrank. Bei solch tiefen Temperaturen wird allgemein eine stark dezimierte Fehlerrate beim künftigen Quantencomputing erwartet. Ausserdem erhoffen sich die Forscher, bei den tiefsten Temperaturen eine neue Art von Materie zu entdecken.

Die Erforschung der Grundlagen und Entwicklung des Quantenrechners ist ein Schwerpunkt am Departement Physik der Universität Basel. Am Basel Center for Quantum Computing and Quantum Coherence (QC2) arbeiten dazu mehrere Forschungsgruppen zusammen. Die Forschungsinitiative wird sowohl vom Swiss Nanoscience Institute (SNI) als auch vom Nationalen Forschungsschwerpunkt Quantum Science and Technology (Co-leading house Basel) gefördert.

Originalbeiträge
D. Kölbl, D. M. Zumbühl, A. Fuhrer, G. Salis, S. F. Alvarado
Breakdown of the Korringa Law of Nuclear Spin Relaxation in Metallic GaAs
Phys. Rev. Lett. 109, 086601 (2012) | doi: 10.1103/PhysRevLett.109.086601

L. Casparis, M. Meschke, D. Maradan, A. C. Clark, C. Scheller, K. K. Schwarzwälder, J. P. Pekola, D. M. Zumbühl
Metallic Coulomb Blockade Thermometry down to 10 mK and below
Rev. Sci. Instr. 83, 083903 (2012) | doi: 10.1063/1.4744944

Weitere Auskünfte
Prof. Dr. Dominik Zumbühl, Departement Physik der Universität Basel, Tel. +41 (0)61 267 36 93, E-Mail: Dominik.Zumbuhl@unibas.ch

Dr. Thomas Schnyder | Universität Basel
Weitere Informationen:
http://www.unibas.ch
http://prl.aps.org/abstract/PRL/v109/i8/e086601
http://rsi.aip.org/resource/1/rsinak/v83/i8/p083903_s1

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie