Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraschnelle Photodetektoren aus Kohlenstoff-Nanoröhrchen

07.03.2011
Kohlenstoff-Nanoröhrchen sind vielversprechende Elemente für optoelektronische Bauteile.

Bisher fehlten jedoch elektronische Methoden, um die optischen und elektronischen Eigenschaften der Nanoröhrchen zeitaufgelöst zu analysieren. Ein Team von Physikern um Professor Alexander Holleitner von der Technischen Universität München (TUM) hat jetzt eine Methode entwickelt, mit der sie unmittelbar messen können, wie schnell sich Elektronen in diesen extrem kleinen Photodetektoren bewegen.


Kohlenstoff-Nanofasern zwischen zwei Goldelektroden. Foto: Alexander Holleitner / TUM

Nanoröhrchen aus Kohlenstoff haben eine Vielzahl außergewöhnlicher Eigenschaften. Sie sind vielversprechende Kandidaten für optoelektronische Bauteile. Doch bisher ist es extrem schwierig, ihre optischen und elektronischen Eigenschaften zu analysieren und zu beeinflussen. Nun gelang es Wissenschaftlern um Professor Alexander Holleitner, Physiker an der TU München und Mitglied des Exzellenzclusters Nanosystems Initiative Munich (NIM), eine Messmethode zu entwickeln, die eine zeitliche Auflösung des sogenannten Photostroms in Photodetektoren bis in den Pikosekundenbereich ermöglicht.

„Eine Pikosekunde ist ein sehr kleines Zeitintervall“, erläutert Alexander Holleitner. „Wären die Elektronen mit Lichtgeschwindigkeit unterwegs, so kämen sie in einer Sekunde fast bis zum Mond. In einer Pikosekunde kämen sie dagegen nur etwa einen Drittel Millimeter weit.“ Die neue Messtechnologie ist rund hundert Mal schneller als die bestehenden Methoden. So können die Wissenschaftler um Professor Alexander Holleitner nun die Geschwindigkeit der Elektronen genau messen. In den Kohlenstoff-Nanoröhrchen legen die Elektronen in einer Pikosekunde nur etwa 8 Zehntausendstel Millimeter oder 800 Nanometer zurück.

Kern des untersuchten Photodetektors sind Kohlenstoff-Röhrchen mit einem Durchmesser von nur etwa einem Nanometer, die über metallische Kontakte elektronisch eingebunden sind. Die Geschwindigkeit der Elektronen bestimmen die Physiker mit Hilfe von koplanaren Streifenleitungen, die sie über ein spezielles zeitaufgelöstes Laser-Spektroskopie-Verfahren auswerten, die Pump-Probe Technik. Hierbei werden mit einem Laserpuls Elektronen in den Kohlenstoff-Nanoröhrchen angeregt und die Dynamik dieses Prozesses mit einem zweien Laser verfolgt.

Die neuentwickelte Methode liefert zahlreiche Erkenntnissen und neue Analysemöglichkeiten, die für eine Reihe von Anwendungen interessant sind. Dazu gehört vor allem die Weiterentwicklung optoelektronischer Bauteile wie nanoskalige Photodetektoren, Photoschalter und Solarzellen.

Die Arbeit wurde unterstützt aus Mitteln der Deutschen Forschungsgemeinschaft (Exzellenzcluster Nanosystems Initiative Munich, NIM) und des Center for NanoScience (CeNS) an der Ludwig-Maximilians-Universität München. An der Publikation wirkten außerdem Physiker der Universität Regensburg und der Eidgenössisch Technischen Hochschule Zürich mit.

Originalpublikation:

Time-Resolved Picosecond Photocurrents in Contacted Carbon Nanotubes,
Leonhard Prechtel, Li Song, Stephan Manus, Dieter Schuh, Werner Wegscheider, Alexander W. Holleitner, Nano Letters 2011, 11 (1), pp 269–272, DOI: 10.1021/nl1036897

Kontakt:

Prof. Dr. Alexander W. Holleitner
Technische Universität München
Walter Schottky Institut – Zentrum für Nanotechnologie und Nanomaterialien
Am Coulombwall 4a, 85748 Garching, Germany
Tel.: +49 89 289 11575 – Fax: +49 89 289 11600
E-Mail: holleitner@wsi.tum.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://pubs.acs.org/doi/abs/10.1021/nl1036897
http://www.wsi.tum.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie