Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraschnelle Kontrolle von Spinströmen durch Laserlicht

12.02.2016

Ein internationales Team mit der Beteiligung Jülicher Wissenschaftler hat einen neuen Effekt entdeckt, mit dem sich Spinströme kontrolliert erzeugen und steuern lassen. Damit haben die Forscher einen weiteren Baustein für sogenannte spintronische Geräte realisiert, die in Computern von übermorgen Datenübertragung in bislang unerreichter Schnelligkeit möglich machen sollen.

Der Elektronen-Spin ist eine quantenmechanische Größe, die eine Art Drehbewegung der Elektronen mit einem entsprechenden Drehimpuls beschreibt. Der Spin kann zwei Orientierungen zu einer vorgegebenen Achse einnehmen – oben oder unten. Sind die Spins nicht in eine zufällige Richtung orientiert, sondern zeigen alle in die gleiche Richtung, fließt zusammen mit dem elektrischen Strom ein Spinstrom, wenn Elektronen in Bewegung sind.


In den zirkular polarisierten Laserpulsen schwingen die Lichtwellen des Lasers mit konstanter Winkelgeschwindigkeit um die Achse der Ausbreitungsrichtung. In den zirkular polarisierten Laserpulsen schwingen die Lichtwellen des Lasers mit konstanter Winkelgeschwindigkeit um die Achse der Ausbreitungsrichtung. Diese wirken wie ein Magnetfeld auf die Elektronenspins, und richten sie aus - ein Spinstromfluß entsteht.

Copyright: Radboud-Universität Nijmegen

Während elektrische Ströme in alltäglicher Elektronik genutzt werden, bilden Spinströme die Basis für Spintronik. In einem solchen System ermöglichen sie eine schnelle Übertragung, Bearbeitung und Speicherung von Daten.

Durch die Spintronik könnten in Zukunft Quantencomputer Wirklichkeit werden, die die leistungsstärksten Supercomputer von heute bei Weitem übertreffen. Anders als elektrischer Strom kann ein Spinstrom "versiegen", weil sich die Spins mit der Zeit wieder zufällig anordnen. Die kontrollierte Erzeugung und Erhaltung von Spinströmen ist daher essentiell für die spintronische Technik und eröffnet interessante Möglichkeiten für die magnetischer Speichertechnik.

Spinstrompulse in Terahertz-Frequenzen

Zur Erzeugung der Spinströme nutzen die Wissenschaftler die Spin-Bahn-Wechselwirkung – die Interaktion vom Spin der Elektronen und deren Bewegung. Dazu entwickelten sie ein wenige Nanometer dickes Schichtsystem aus magnetischen und nichtmagnetischen Metallen, die jeweils unterschiedlich starke Spin-Bahn-Wechselwirkung aufwiesen. Angeregt durch einen ultrakurzen Laserpuls – 20 Billiardstel Sekunden –, entstehen in dem Schichtsystem Spinstrompulse in extrem schnellen Terahertz-Frequenzen (Tausend Milliarden Vorgänge pro Sekunde).

"Das Besondere an der neuen Studie ist die Art des verwendeten Laserlichts", erläutert Yuriy Mokrousov, Leiter der Forschungsgruppe "Topological Nanoelectronics" am Jülicher Peter Grünberg Institut/Institute for Advanced Simulation. "Wir haben zirkular polarisierte Laserpulse verwendet, bei denen die Lichtwellen des Lasers um die Achse der Ausbreitungsrichtung schwingen – etwa wie beim Gewinde einer Schraube", erklärt Frank Freimuth vom Peter Grünberg Institut. "Diese wirken wie ein Magnetfeld auf die Elektronenspins, und richten sie aus."

Kontrollierte Erzeugung von Spinströmen

Es ist bekannt, dass zirkular polarisiertes Licht in Halbleitern mit einer starken Spin-Bahn-Wechselwirkung einen Stromfluss anregen kann. Jetzt konnten die Forscher zum ersten Mal solche lichtinduzierten Effekte in für spintronische Bauelemente verwendeten Metallen beobachten, und erstmalig auf einer so extrem kurzen Zeitskala.

"Damit ermöglicht das zirkular polarisierte Licht eine kontrollierte Erzeugung von Spinströmen in dem Schichtsystem", erklärt Freimuth. Die Richtung dieses Stroms kann damit allein durch die Drehrichtung der Schwingungen des Laserpulses, die Magnetisierung der Metalle, und die Anordnung der Schichten bestimmt werden. Die kontaktlose, rein optische Steuerung von Spinströmen könnte in Zukunft spintronische Bauteile ermöglichen, die im ultraschnellen Terahertz-Bereich arbeiten.


Originalveröffentlichung:

Femtosecond control of electric currents in metallic ferromagnetic heterostructures, T.J. Huisman et al.; Nature Nanotechnology. Published online 08 February 2016, DOI:10.1038/NNANO.2015.331
http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2015.331.html


Weitere Informationen:

Peter Grünberg Institut, Bereich Quanten-Theorie der Materialien (PGI-1 / IAS-1)
Nachwuchsgruppe "Topologische Nanotechnologie"
"Ultraschnelle Spinströme unter Kontrolle gebracht" Pressemitteilung April 2013


Ansprechpartner:

Prof. Dr. Yuriy Mokrousov
Quanten-Theorie der Materialien (PGI-1/IAS-1),
Forschungszentrum Jülich
Tel.: 02461 61-4434
E-Mail: y.mokrousov@fz-juelich.de


Dr. Frank Freimuth
Quanten-Theorie der Materialien (PGI-1/IAS-1)
Forschungszentrum Jülich
Tel.: 02461 61-1608
E-Mail: f.freimuth@fz-juelich.de


Pressekontakt:

Dr. Regine Panknin
Unternehmenskommunikation
Tel.: 02461 61-9054
E-Mail: r.panknin@fz-juelich.de

Dr. Regine Panknin | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie